31 research outputs found

    Challenges and prospects of plasmonic metasurfaces for photothermal catalysis

    Get PDF
    Abstract Solar-thermal technologies for converting chemicals using thermochemistry require extreme light concentration. Exploiting plasmonic nanostructures can dramatically increase the reaction rates by providing more efficient solar-to-heat conversion by broadband light absorption. Moreover, hot-carrier and local field enhancement effects can alter the reaction pathways. Such discoveries have boosted the field of photothermal catalysis, which aims at driving industrially-relevant chemical reactions using solar illumination rather than conventional heat sources. Nevertheless, only large arrays of plasmonic nano-units on a substrate, i.e., plasmonic metasurfaces, allow a quasi-unitary and broadband solar light absorption within a limited thickness (hundreds of nanometers) for practical applications. Through moderate light concentration (∼10 Suns), metasurfaces reach the same temperatures as conventional thermochemical reactors, or plasmonic nanoparticle bed reactors reach under ∼100 Suns. Plasmonic metasurfaces, however, have been mostly neglected so far for applications in the field of photothermal catalysis. In this Perspective, we discuss the potentialities of plasmonic metasurfaces in this emerging area of research. We present numerical simulations and experimental case studies illustrating how broadband absorption can be achieved within a limited thickness of these nanostructured materials. The approach highlights the synergy among different enhancement effects related to the ordered array of plasmonic units and the efficient heat transfer promoting faster dynamics than thicker structures (such as powdered catalysts). We foresee that plasmonic metasurfaces can play an important role in developing modular-like structures for the conversion of chemical feedstock into fuels without requiring extreme light concentrations. Customized metasurface-based systems could lead to small-scale and low-cost decentralized reactors instead of large-scale, infrastructure-intensive power plants

    A method for reproducible measurements of serum BDNF: Comparison of the performance of six commercial assays

    Get PDF
    Brain-Derived Neurotrophic Factor (BDNF) has attracted increasing interest as potential biomarker to support the diagnosis or monitor the efficacy of therapies in brain disorders. Circulating BDNF can be measured in serum, plasma or whole blood. However, the use of BDNF as biomarker is limited by the poor reproducibility of results, likely due to the variety of methods used for sample collection and BDNF analysis. To overcome these limitations, using sera from 40 healthy adults, we compared the performance of five ELISA kits (Aviscera-Bioscience, Biosensis, Millipore-ChemiKine(TM), Promega-Emax(\uae), R&D-System-Quantikine(\uae)) and one multiplexing assay (Millipore-Milliplex(\uae)). All kits showed 100% sample recovery and comparable range. However, they exhibited very different inter-assay variations from 5% to 20%. Inter-assay variations were higher than those declared by the manufacturers with only one exception which also had the best overall performance. Dot-blot analysis revealed that two kits selectively recognize mature BDNF, while the others reacted with both pro-BDNF and mature BDNF. In conclusion, we identified two assays to obtain reliable measurements of human serum BDNF, suitable for future clinical applications

    Serum AP-endonuclease 1 (sAPE1) as novel biomarker for hepatocellular carcinoma

    Get PDF
    Late diagnosis for Hepatocellular Carcinoma (HCC) remains one of the leading causes for the high mortality rate. The apurinic/apyrimidinic endonuclease 1 (APE1), an essential member of the base excision DNA repair (BER) pathway, contributes to cell response to oxidative stress and has other non-repair activities. In this study, we evaluate the role of serum APE1 (sAPE1) as a new diagnostic biomarker and we investigate the biological role for extracellular APE1 in HCC. sAPE1 level was quantified in 99 HCC patients, 50 non-HCC cirrhotic and 100 healthy controls. The expression level was significantly high in HCC (75.8 [67.3\u201387.9] pg/mL) compared to cirrhosis (29.8 [18.3\u201336.5] pg/mL] and controls (10.8 [7.5\u201313.2] pg/mL) (p < 0.001). The sAPE1 level corresponded with its protein expression in HCC tissue. sAPE1 had high diagnostic accuracy to differentiate HCC from cirrhotic (AUC = 0.87, sensitivity 88%, specificity 71%, cut-off of 36.3 pg/mL) and healthy subjects (AUC 0.98, sensibility 98% and specificity 83%, cut-off of 19.0 pg/mL). Recombinant APE1, exogenously added to JHH6 cells, significantly promotes IL-6 and IL-8 expression, suggesting a role of sAPE1 as a paracrine pro-inflammatory molecule, which may modulate the inflammatory status in cancer microenvironment. We described herein, for the first time to our knowledge, that sAPE1 might be considered as a promising diagnostic biomarker for HCC

    Association between Protective and Deleterious HLA Alleles with Multiple Sclerosis in Central East Sardinia

    Get PDF
    The human leukocyte antigen (HLA) complex on chromosome 6p21 has been unambiguously associated with multiple sclerosis (MS). The complex features of the HLA region, especially its high genic content, extreme polymorphism, and extensive linkage disequilibrium, has prevented to resolve the nature of HLA association in MS. We performed a family based association study on the isolated population of the Nuoro province (Sardinia) to clarify the role of HLA genes in MS. The main stage of our study involved an analysis of the ancestral haplotypes A2Cw7B58DR2DQ1 and A30Cw5B18DR3DQ2. On the basis of a multiplicative model, the effect of the first haplotype is protective with an odds ratio (OR) = 0.27 (95% confidence interval CI 0.13–0.57), while that of the second is deleterious, OR 1.78 (95% CI 1.26–2.50). We found both class I (A, Cw, B) and class II (DR, DQ) loci to have an effect on MS susceptibility, but we saw that they act independently from each other. We also performed an exploratory analysis on a set of 796 SNPs in the same HLA region. Our study supports the claim that Class I and Class II loci act independently on MS susceptibility and this has a biological explanation. Also, the analysis of SNPs suggests that there are other HLA genes involved in MS, but replication is needed. This opens up new perspective on the study of MS

    Challenges in temperature measurements in gas-phase photothermal catalysis

    No full text
    A reliable measurement of the sample temperature during photothermal catalysis experiments is of paramount importance in disentangling the thermal and non-thermal contributions to the overall process. Moreover, even small errors in the temperature value may lead to substantial mistakes in estimating the reaction rate due to the exponential dependence of the Arrhenius law. In this work, after general setup considerations, we discuss the challenges in reliably measuring the temperature of photocatalysts considering the case of thin-filmtitaniumnitride (TiN), anemergingplasmonic metal, and of titanium dioxide (TiO2), a benchmark semiconductor, under gas phase conditions. By evaluating the effects of the gas flux, gas composition, and choice of instrumentation, we show how all these parameters can significantly affect the values of the measured temperatures. This analysis highlights the critical points that researchers ought to consider when performing photothermal catalysis studies

    Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays

    No full text
    Plasmonic-based solar absorbers exhibit complete light absorption in a sub-?m thickness, representing an alternative to mm-thick carbon-based materials most typically employed for solar-driven steam generation. In this work, we present the scalable fabrication of ultrathin plasmonic titanium nitride (TiN) nanocavity arrays that exhibit 90% broadband solar light absorption within - 250 nm from the illuminated surface and show a fast non-linear increase of performance with light intensity. At 14 Suns TiN nanocavities reach - 15 kg h?1 m?2 evaporation rate and - 76% thermal efficiency, a steep increase from - 0.4 kg h-1 m? 2 and - 20% under 1.4 Suns. Electromagnetic, thermal and diffusion modeling of our system reveals the contribution of each material and reactor component to heat dissipation and shows that a quasi-two-dimensional heat dissipation regime significantly accelerates water evaporation. Our approach to ultrathin plasmonic absorbers can boost the performance of devices for evaporation/desalination and holds promise for a broader range of phase separation processes.Web of Science83art. no. 10582

    Controlling the plasmonic properties of titanium nitride thin films by radiofrequency substrate biasing in magnetron sputtering

    No full text
    Titanium nitride (TiN) is a promising plasmonic material alternative to gold and silver thanks to its refractory character, low resistivity (<100 mu Omega cm) and compatibility with microelectronic industry processes. Extensive research is currently focusing on the development of magnetron sputtering as a large-scale technique to produce TiN thin films with low resistivity and optimized plasmonic performance. As such, more knowledge on the correlation between process parameters and the functional properties of TiN is needed. Here we report the effect of radiofrequency (RF) substrate biasing during the sputtering process on the structural, optical and electrical properties of TiN films. We employ spectroscopic ellipsometry as a sensible characterization method and we show that a moderate RF power, despite reducing the grain size, allows to achieve optimal plasmonic quality factors and a low resistivity (<100 mu Omega cm). This is attributed to the introduction of a slight under-stoichiometry in the material (i.e., TiN0.85), as opposite to the films synthesized without bias or under intense bombardment conditions. RF substrate biasing during magnetron sputtering appears thus as a viable tool to prepare TiN thin films at room temperature with desired plasmonic properties.Web of Science554art. no. 14954

    Nanoporous Titanium (Oxy)nitride Films as Broadband Solar Absorbers

    No full text
    International audienceBroadband absorption of solar light is a key aspect in many applications that involve an efficient conversion of solar energy to heat. Titanium nitride (TiN)-based materials, in the form of periodic arrays of nanostructures or multilayers, can promote significant heat generation upon illumination thanks to their efficient light absorption and refractory character. In this work, pulsed laser deposition was chosen as a synthesis technique to shift metallic bulk-like TiN to nanoparticle-assembled hierarchical oxynitride (TiOxNy) films by increasing the background gas deposition pressure. The nanoporous hierarchical films exhibit a tree-like morphology, a strong broadband solar absorption (∼90% from the UV to the near-infrared range), and could generate temperatures of ∼475 °C under moderate light concentration (17 Suns). The high heat generation achieved by treelike films is ascribed to their porous morphology, nanocrystalline structure, and oxynitride composition, which overall contribute to a superior light trapping and dissipation to heat. These properties pave the way for the implementation of such films as solar absorber structures
    corecore