294 research outputs found

    The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism

    Get PDF
    It is generally held that the content of several free amino acids and dipeptides is closely related to the energy-supplying metabolism of skeletal muscles. Metabolic characteristics of muscles are involved in the variability of meat quality due to their ability to influence the patterns of energy metabolism not only in living animal but also during post-mortem time. Within this context, this study aimed at establishing whether the concentration of histidine dipeptides can affect muscle post-mortem metabolism, examining the glycolytic pathway of three chicken muscles (Pectoralis major, extensor iliotibialis lateralis and gastrocnemius internus as glycolytic, intermediate and oxidative-type, respectively) selected based on their histidine dipeptides content and ultimate pH. Thus, a total of 8 carcasses were obtained from the same flock of broiler chickens (Ross 308 strain, females, 49 days of age, 2.8 kg body weight at slaughter) and selected immediately after evisceration from the line of a commercial processing plant. Meat samples of about 1 cm3 were excised from bone-in muscles at 15, 60, 120 and 1,440 min post-mortem, instantly frozen in liquid nitrogen and used for the determination of pH, glycolytic metabolites, buffering capacity as well as histidine dipeptides content through 1H-NMR. Overall results suggest that glycolysis in leg muscles ceased already after 2 h post-mortem, while in breast muscle continued until 24 h, when it exhibited significantly lower pH values (P<0.05). However, considering its remarkable glycolytic potential, Pectoralis major muscle should have exhibited a greater and faster acidification, suggesting that its higher (P<0.05) histidine dipeptides\u2019 content might have prevented a potentially stronger acidification process. Accordingly, breast muscle also showed greater (P<0.05) buffering ability in the pH range 6.0-7.0. Therefore, anserine and carnosine, being highly positively correlated with muscle\u2019s buffering capacity (P<0.001), might play a role in regulating post-mortem pH decline, thus exerting an effect on muscle metabolism during pre-rigor phase and the quality of the forthcoming meat. Overall results also suggest that total histidine dipeptides content along with muscular ultimate pH represent good indicators for the energy-supplying metabolism of chicken muscles

    Probiotic Supplementation in Trained Trotter Horses: Effect on Blood Clinical Pathology Data and Urine Metabolomic Assessed in Field

    Get PDF
    The attention of sports community towards probiotic supplementation as a way to promote exercise and training performance, together with good health, has increased in recent years. This has applied also to horses, with promising results. Here, for the first time, we tested a probiotic mix of several strains of live bacteria typically employed for humans to improve the training performance of Standardbred horses in athletic activity. To evaluate its effects on the horse performance, we measured lactate concentration in blood, a translational outcome largely employed for the purpose, combined with the study of hematological and biochemical parameters, together with urine from a metabolomics perspective. The results showed that the probiotic supplementation reduced significantly post exercise blood lactate concentration. The hematological and biochemical parameters, together with urine molecular profile, suggested that a likely mechanism underlying this positive effect was connected to a switch of energy source in muscle from carbohydrates to SCFAs. Three sulfur-containing molecules differently concentrated in urines in connection to probiotics administration suggested that such switch was linked to sulfur metabolism

    Vaginal microbiome and metabolome highlight specific signatures of bacterial vaginosis

    Get PDF
    In this study, we sought to find novel bacterial and metabolic hallmarks for bacterial vaginosis (BV). We studied the vaginal microbiome and metabolome of vaginal fluids from BV-affected patients (n = 43) and healthy controls (n = 37) by means of an integrated approach based on quantitative polymerase chain reaction (qPCR) and proton nuclear magnetic resonance ((1)H-NMR). The correlations between the clinical condition and vaginal bacterial communities were investigated by principal component analysis (PCA). To define the metabolomics signatures of BV, 100 discriminant analysis by projection on latent structure (PLS-DA) models were calculated. Bacterial signatures distinguishing the health condition and BV were identified by qPCR. Lactobacillus crispatus strongly featured the healthy vagina, while increased concentrations of Prevotella, Atopobium and Mycoplasma hominis specifically marked the infection. (1)H-NMR analysis has led to the identification and quantification of 17 previously unreported molecules. BV was associated with changes in the concentration of metabolites belonging to the families of amines, organic acids, short chain fatty acids, amino acids, nitrogenous bases and monosaccharides. In particular, maltose, kynurenine and NAD(+) primarily characterised the healthy status, while nicotinate, malonate and acetate were the best metabolic hallmarks of BV. This study helps to better understand the role of the vaginal microbiota and metabolome in the development of BV infection. We propose a molecular approach for the diagnosis of BV based on quantitative detection in the vaginal fluids of Atopobium, Prevotella and M. hominis, and nicotinate, malonate and acetate by combining qPCR and (1)H-NMR

    Respiratory metabolites in bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC) can differentiate horses affected by severe equine asthma from healthy horses

    Get PDF
    The use of an untargeted metabolomic approach to investigate biofluids of respiratory origin is of increasing interest in human and veterinary lung research. Considering the high incidence of equine asthma (>\u200914%) within horse population and the importance of this animal model for human disease, we aimed to investigate the metabolomic profile of bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC) in healthy and asthmatic horses

    Effect of dietary arginine to lysine ratios on productive performance, meat quality, plasma and muscle metabolomics profile in fast-growing broiler chickens

    Get PDF
    open7siBackground: Due to the important functions of arginine in poultry, it should be questioned whether the currently adopted dietary Arg:Lys ratios are sufficient to meet the modern broiler requirement in arginine. The present study aimed, therefore, to evaluate the effects of the dietary supplementation of L-arginine in a commercial broiler diet on productive performance, breast meat quality attributes, incidence and severity of breast muscle myopathies and foot pad dermatitis (FPD), and plasma and muscle metabolomics profile in fast-growing broilers. Results: A total of 1,170 1-day-old Ross 308 male chicks was divided into two experimental groups of 9 replicates each fed either a commercial basal diet (CON, digestible Arg:Lys ratio of 1.05,1.05,1.06and1.07 in each feeding phase, respectively) or the same basal diet supplemented on-top with crystalline L-arginine (ARG, digestible Arg:Lys ratio of 1.15,1.15,1.16and1.17, respectively). Productive parameters were determined at the end of each feeding phase (12, 22, 33, 43 d). At slaughter (43 d), incidence and severity of FPD and breast myopathies were assessed, while plasma and breast muscle samples were collected and analyzed by proton nuclear magnetic resonance-spectroscopy. The dietary supplementation of arginine significantly reduced cumulative feed conversion ratio compared to the control diet at 12 d (1.352 vs. 1.401, P<0.05), 22 d (1.398 vs. 1.420; P<0.01) and 33 d (1.494 vs. 1.524; P<0.05), and also tended to improve it in the overall period of trial (1.646 vs. 1.675; P=0.09). Body weight was significantly increased in ARG compared to CON group at 33 d (1,884 vs. 1,829g; P<0.05). No significant effect was observed on meat quality attributes, breast myopathies and FPD occurrence. ARG birds showed significantly higher plasma concentration of arginine and leucine, and lower of acetoacetate, glutamate, adenosine and proline. Arginine and acetate concentrations were higher, whereas acetone and inosine levels were lower in the breast of ARG birds (P<0.05). Conclusions: Taken together, these data showed that increased digestible Arg:Lys ratio had positive effects on feed efficiency in broiler chickens probably via modulation of metabolites that play key roles in energy and protein metabolism.openZampiga, Marco; Laghi, Luca; Petracci, Massimiliano; Zhu, Chenglin; Meluzzi, Adele; Dridi, Sami; Sirri, Federico*Zampiga, Marco; Laghi, Luca; Petracci, Massimiliano; Zhu, Chenglin; Meluzzi, Adele; Dridi, Sami; Sirri, Federico

    Insights into the Metabolomic Diversity of Latilactobacillus sakei

    Get PDF
    : Latilactobacillus sakei (L. sakei), widely used as a starter culture in fermented sausages, is a species adapted to meat environments. Its ability to survive for a long time in such products is due to the exploitation of different metabolic pathways to gain energy (hexose and pentose sugar fermentation, amino acids catabolism, etc.). Since L. sakei demonstrates high phenotypic and metabolic strain biodiversity, in this work, a metabolomic approach was used to compare five strains of different origins. They were cultivated in a defined medium with glucose or ribose at two concentrations, and analyzed through nuclear magnetic resonance (1H-NMR) spectroscopy to monitor amino acid consumptions and accumulation of organic acids and aroma compounds. The results showed that all the strains were able to use arginine, especially when cultivated with ribose, while serine was consumed mainly in the presence of glucose. Aroma compounds (i.e., diacetyl and acetoin) were mainly accumulated in samples with ribose. These aspects are relevant for starter cultures selection, to confer specific features to fermented sausages, and to optimize the fermentations. Moreover, the use of 1H-NMR allowed the fast identification of different classes of compounds (without derivatization or extraction procedures), providing a powerful tool to increase the knowledge of the metabolic diversity of L. sakei

    Functional Magnetic Resonance in the Evaluation of Oesophageal Motility Disorders

    Get PDF
    Functional magnetic resonance imaging (fMRI) has been recently proposed for the evaluation of the esophagus. Our aim is to assess the role of fMRI as a technique to assess morphological and functional parameters of the esophagus in patients with esophageal motor disorders and in healthy controls. Subsequently, we assessed the diagnostic efficiency of fMRI in comparison to videofluoroscopic and manometric findings in the investigation of patients with esophageal motor disorders. Considering that fMRI was shown to offer valuable information on bolus transit and on the caliber of the esophagus, variations of these two parameters in the different types of esophageal motor alterations have been assessed. fMRI, compared to manometry and videofluoroscopy, showed that a deranged or absent peristalsis is significantly associated with slower transit time and with increased esophageal diameter. Although further studies are needed, fMRI represents a promising noninvasive technique for the integrated functional and morphological evaluation of esophageal motility disorders

    Feeding broiler chickens with arginine above recommended levels: effects on growth performance, metabolism, and intestinal microbiota

    Get PDF
    BackgroundArginine is an essential amino acid for chickens and feeding diets with arginine beyond the recommended levels has been shown to influence the growth performance of broiler chickens in a positive way. Nonetheless, further research is required to understand how arginine supplementation above the widely adopted dosages affects metabolism and intestinal health of broilers. Therefore, this study was designed to assess the effects of arginine supplementation (i.e., total arginine to total lysine ratio of 1.20 instead of 1.06-1.08 recommended by the breeding company) on growth performance of broiler chickens and to explore its impacts on the hepatic and blood metabolic profiles, as well as on the intestinal microbiota. For this purpose, 630 one-day-old male Ross 308 broiler chicks were assigned to 2 treatments (7 replicates each) fed a control diet or a crystalline L-arginine-supplemented diet for 49 d.ResultsCompared to control birds, those supplemented with arginine performed significantly better exhibiting greater final body weight at D49 (3778 vs. 3937 g; P < 0.001), higher growth rate (76.15 vs. 79.46 g of body weight gained daily; P < 0.001), and lower cumulative feed conversion ratio (1.808 vs. 1.732; P < 0.05). Plasma concentrations of arginine, betaine, histidine, and creatine were greater in supplemented birds than in their control counterparts, as were those of creatine, leucine and other essential amino acids at the hepatic level. In contrast, leucine concentration was lower in the caecal content of supplemented birds. Reduced alpha diversity and relative abundance of Firmicutes and Proteobacteria (specifically Escherichia coli), as well as increased abundance of Bacteroidetes and Lactobacillus salivarius were found in the caecal content of supplemented birds.ConclusionsThe improvement in growth performance corroborates the advantages of supplementing arginine in broiler nutrition. It can be hypothesized that the performance enhancement found in this study is associated with the increased availability of arginine, betaine, histidine, and creatine in plasma and the liver, as well as to the ability of extra dietary arginine to potentially ameliorate intestinal conditions and microbiota of supplemented birds. However, the latter promising property, along with other research questions raised by this study, deserve further investigations
    corecore