171 research outputs found

    Inspiratory muscle training in difficult to wean patients: work it harder, make it better, do it faster, makes us stronger

    Get PDF
    Weaning from prolonged mechanical ventilation is a complex, time-consuming process that involves the loss of force/generating capacity of the inspiratory muscle. In their study 'Inspiratory muscle strength training improves the outcome in failure to wean patients: a randomized trial', Martin and colleagues showed that the use of an inspiratory muscle strength program increased the maximal inspiratory pressure and improved weaning success compared to a control group. The study was performed mainly in post-surgical patients, however, and the results, therefore, may not be generalizable to other subsets of patients, such as those with chronic obstructive pulmonary disease or congestive heart failure. Indeed, the study applied so-called 'strength training' and not 'endurance training', which may be more appropriate in certain circumstances

    Near-field electrospinning of conjugated polymer light-emitting nanofibers

    Full text link
    The authors report on the realization of ordered arrays of light-emitting conjugated polymer nanofibers by near-field electrospinning. The fibers, made by poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], have diameters of few hundreds of nanometers and emission peaked at 560 nm. The observed blue-shift compared to the emission from reference films is attributed to different polymer packing in the nanostructures. Optical confinement in the fibers is also analyzed through self-waveguided emission. These results open interesting perspectives for realizing complex and ordered architectures by light-emitting nanofibers, such as photonic circuits, and for the precise positioning and integration of conjugated polymer fibers into light-emitting devices.Comment: 11 pages, 6 figures Nanoscale, 201

    An overview on the use of additives and preparation procedure in phase change materials for thermal energy storage with a focus on long term applications

    Get PDF
    In this review we aim at providing an up-to-date and comprehensive overview on the use of additives within selected Phase Change Materials (PCMs) from both an experimental and more theoretical perspective. Traditionally, mostly focusing on short-term thermal energy storage applications, the addition of (nano)fillers has been extensively studied to enhance unsatisfactory thermo-physical properties in PCMs, in order to overcome limiting aspects such as low thermal conductivity possibly leading to unacceptable long charging and/or discharging periods and inefficient heat-storage systems. On the other hand, here we focus on the most important PCMs for long-term thermal energy storage (i.e. spanning from classical solid-to-liquid to more recent solid-to-solid PCMs) and make an effort in shedding light on the role played not only by additives but also (and importantly) by additivation protocols on the resulting thermo-physical and stability properties. While introducing and connecting to general advantages related to additivation in classical PCMs for thermal energy storage, we discuss specifically the use of additives in sugar alcohols and sodium acetate trihydrate, as well as in novel emerging classes of PCMs capable of undergoing solid-to-solid transitions and showing promising features for long-term heat storage materials. We highlight outstanding issues in the use of additives for property enhancement in PCMs and expect that the present work can contribute to expand the current understanding and field of application of the less mature PCMs for thermal energy storage, especially as far as long term applications are concerned

    Exergy analysis of solar desalination systems based on passive multi-effect membrane distillation

    Get PDF
    Improving the efficiency and sustainability of water treatment technologies is crucial to reduce energy consumption and environmental pollution. Solar-driven devices have the potential to supply off-grid areas with freshwater through a sustainable approach. Passive desalination driven by solar thermal energy has the additional advantage to require only inexpensive materials and easily maintainable components. The bottleneck to the widespread diffusion of such solar passive desalination technologies is their lower productivity with respect to active ones. A completely passive, multi-effect membrane distillation device with an efficient use of solar energy and thus a remarkable enhancement in distillate productivity has been recently proposed. The improved performance of this distillation device comes from the efficient exploitation of low-temperature thermal energy to drive multiple distillation processes. In this work, we analyze the proposed distillation technology by a more in-depth thermodynamic detail, considering a Second Law analysis. We then report a detailed exergy analysis, which allows to get insights on the production of irreversibilities in each component of the assembly. These calculations provide guidelines for the possible optimization of the device, since simple changes in the original configuration may easily yield up to a 46% increase in the Second Law efficiency. Keywords: Sustainability, Exergy analysis, Water treatment, Membrane distillation, Solar energ

    Data-driven appraisal of renewable energy potentials for sustainable freshwater production in Africa

    Get PDF
    Clean water scarcity plagues several hundred million people worldwide, representing a major global problem. Nearly half of the total population lacking access to safe and drinkable water lives in Africa. Nonetheless, the African continent has a remarkable yet untapped potential in terms of renewable energy production, which may serve to produce clean water from contaminated or salty resources and for water extraction and distribution. In this view, the analysis of possible scenarios relies on data-driven approaches due to the scale of the problem and the general lack of comprehensive, direct on-site experience. In this work, we aim to systematically review and map the renewable potentials against the freshwater shortage in Africa to gain insight on perspective possible policies and provide a readily usable and well-structured framework and database for further analyses. All reported datasets are critically discussed, organized in tables, and classified by a few metadata to facilitate their usability in further analyses. The accompanying discussion focuses on regions that, in the near future, are expected to significantly exploit their renewable energy potentials, and on the reasons at the basis of the local water shortage, including technological and distribution problems

    Roller Speed Skating Kinematics and Electromyographic Analysis: A Methodological Approach

    Get PDF
    Roller speed skating is a discipline similar to hockey and ice skating from a biomechanical point of view, but there are no specific functional protocols for rehabilitation and performance improvement for these athletes. The aim of the study is to create a dedicated functional, kinematic and electromyographic protocol to be used as a tool for future studies on the subject. The protocol was created, starting from a correct and repeatable movement as a case study, on a world speed skating champion, using an inertial sensor positioned at the level of the first sacral vertebra, eight electromyographic probes positioned on one or the other lower limb, and a high-definition camera at 50 Hz. The results show the electromyographic activity of the muscles investigated, the degree of absolute muscle activation and compared to their maximum voluntary isometric contraction (MVIC), the level of co-activation of the agonist/antagonist muscles, and the accelerations of the body on the three axes of space. The results will represent the basis for physiotherapy and specific training use. Future developments will include the analysis of a sample of elite athletes to be able to build a normal range on the parameters investigated, and the possibility of treating in the most appropriate way possible muscle injuries (which mostly occur in the groin in such athletes) once they have occurred, even with oriented MVIC or co-activation oriented exercises

    Water/Ethanol and 13X Zeolite Pairs for Long-Term Thermal Energy Storage at Ambient Pressure

    Get PDF
    Thermal energy storage is a key technology to increase the global energy share of renewables - by matching energy availability and demand - and to improve the fuel economy of energy systems - by recovery and reutilization of waste heat. In particular, the negligible heat losses of sorption technologies during the storing period make them ideal for applications where long-term storage is required. Current technologies are typically based on the sorption of vapour sorbates on solid sorbents, requiring cumbersome reactors and components operating at below ambient pressure. In this work, we report the experimental characterization of working pairs made of various liquid sorbates (distilled water, ethanol and their mixture) and a 13X zeolite sorbent at ambient pressure. The sorbent hydration by liquid sorbates shows lower heat storage performance than vapour hydration; yet, it provides similar heat storage density to that obtainable by latent heat storage (40-50 kWh/m^3) at comparable costs, robustness and simplicity of the system, while gaining the long-term storage capabilities of sorption-based technologies. As a representative application example of long-term storage, we verify the feasibility of a sorption heat storage system with liquid sorbate, which could be used to improve the cold-start of stand-by generators driven by internal combustion engines. This example shows that liquid hydration may be adopted as a simple and low-cost alternative to more efficient - yet more expensive - techniques for long-term energy storage

    Thermally triggered nanorocket from double-walled carbon nanotube in water

    Get PDF
    In this work, we propose and investigate the use of double-walled carbon nanotubes (DWCNTs) as nanosized rockets. The nanotubes are immersed in water, and the propulsion of inner nanotube is achieved by heating the water encapsulated within the DWCNT. Considering a setup made of (5,5)(8,8) DWCNT, molecular dynamics simulations for different water temperatures show that the trajectory can be divided into four phases: trigger, expulsion, damping and final equilibrium. After analysing the dynamics and the involved forces, we find out that the inner nanotube expulsion is mainly controlled by van der Waals interactions between the nanotubes; whereas, the damping role is predominantly played by the external aqueous environment. Based on these results, we propose an analytical model able to predict both the triggering time for a given water temperature and the whole dynamics of nanorocket. The validity of such dynamical model can be extended also to a broader variety of DWCNT configurations, once the different forces acting on the inner nanotube are provided. The proposed model may contribute to assist the design of nanorockets in several nanotechnology applications, such as triggered drug delivery, cell membrane piercing, or colloids with thermophoretic properties

    Mesoscopic Moment Equations for Heat Conduction: Characteristic Features and Slow–Fast Mode Decomposition

    Get PDF
    In this work, we derive different systems of mesoscopic moment equations for the heat-conduction problem and analyze the basic features that they must hold. We discuss two- and three-equation systems, showing that the resulting mesoscopic equation from two-equation systems is of the telegraphist’s type and complies with the Cattaneo equation in the Extended Irreversible Thermodynamics Framework. The solution of the proposed systems is analyzed, and it is shown that it accounts for two modes: a slow diffusive mode, and a fast advective mode. This latter additional mode makes them suitable for heat transfer phenomena on fast time-scales, such as high-frequency pulses and heat transfer in small-scale devices. We finally show that, if proper initial conditions are provided, the advective mode disappears, and the solution of the system tends asymptotically to the transient solution of the classical parabolic heat-conduction equation

    XMM-Newton discovery of 2.6 s pulsations in the soft gamma-ray repeater SGR 1627-41

    Full text link
    After nearly a decade of quiescence, the soft gamma-ray repeater SGR 1627-41 reactivated on 2008 May 28 with a bursting episode followed by a slowly decaying enhancement of its persistent emission. To search for the still unknown spin period of this SGR taking advantage of its high flux state, we performed on 2008 September 27-28 a 120 ks long X-ray observation with the XMM-Newton satellite. Pulsations with P = 2.594578(6) s were detected at a higher than 6-sigma confidence level, with a double-peaked pulse profile. The pulsed fraction in the 2-12 keV range is 19% +/- 3% and 24% +/- 3% for the fundamental and the second harmonic, respectively. The observed 2-10 keV flux is 3.4E-13 erg/cm^2/s, still a factor of ~ 5 above the quiescent pre-burst-activation level, and the spectrum is well fitted by an absorbed power law plus blackbody model (photon index Gamma = 0.6, blackbody temperature kT = 0.5 keV, and absorption nH = 1.2E+23 cm^-2). We also detected a shell of diffuse soft X-ray emission which is likely associated with the young supernova remnant G337.0-0.1.Comment: Minor changes to match the final version (to appear in The Astrophysical Journal Letters). 5 pages in emulate-apj style, 1 table, 4 figures (1 color
    • …
    corecore