86 research outputs found

    Parametric decay of oblique arc-polarized Alfvén waves

    Get PDF

    Constraints on particle acceleration sites in the Crab Nebula from relativistic MHD simulations

    Get PDF
    The Crab Nebula is one of the most efficient accelerators in the Galaxy and the only galactic source showing direct evidence of PeV particles. In spite of this, the physical process behind such effective acceleration is still a deep mystery. While particle acceleration, at least at the highest energies, is commonly thought to occur at the pulsar wind termination shock, the properties of the upstream flow are thought to be non-uniform along the shock surface, and important constraints on the mechanism at work come from exact knowledge of where along this surface particles are being accelerated. Here we use axisymmetric relativistic MHD simulations to obtain constraints on the acceleration site(s) of particles of different energies in the Crab Nebula. Various scenarios are considered for the injection of particles responsible for synchrotron radiation in the different frequency bands, radio, optical and X-rays. The resulting emission properties are compared with available data on the multi wavelength time variability of the inner nebula. Our main result is that the X-ray emitting particles are accelerated in the equatorial region of the pulsar wind. Possible implications on the nature of the acceleration mechanism are discussed.Comment: 12 pages, 7 figures, 2 table

    Covariant and 3+1 Equations for Dynamo-Chiral General Relativistic Magnetohydrodynamics

    Get PDF
    The exponential amplification of initial seed magnetic fields in relativistic plasmas is a very important topic in astrophysics, from the conditions in the early Universe to the interior of neutron stars. While dynamo action in a turbulent plasma is often invoked, in the last years a novel mechanism of quantum origin has gained increasingly more attention, namely the Chiral Magnetic Effect (CME). This has been recognized in semi-metals and it is most likely at work in the quark-gluon plasma formed in heavy-ion collision experiments, where the highest magnetic fields in nature, up to B~10^18 G, are produced. This effect is expected to survive even at large hydrodynamical/MHD scales and it is based on the chiral anomaly due to an imbalance between left- and right-handed relativistic fermions in the constituent plasma. Such imbalance leads to an electric current parallel to an external magnetic field, which is precisely the same mechanism of an alpha-dynamo action in classical MHD. Here we extend the close parallelism between the chiral and the dynamo effects to relativistic plasmas and we propose a unified, fully covariant formulation of the generalized Ohm's law. Moreover, we derive for the first time the 3+1 general relativistic MHD equations for a chiral plasma both in flat and curved spacetimes, in view of numerical investigation of the CME in compact objects, especially magnetars, or of the interplay among the non-ideal magnetic effects of dynamo, the CME and reconnection.Comment: 11 pages, 3 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Numerical simulations of stellar jets and comparison between synthetic and observed maps: clues to the launch mechanism

    Get PDF
    High angular resolution spectra obtained with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) provide rich morphological and kinematical information about the stellar jet phenomenon, which allows us to test theoretical models efficiently. In this work, numerical simulations of stellar jets in the propagation region are executed with the PLUTO code, by adopting inflow conditions that arise from former numerical simulations of magnetized outflows, accelerated by the disk-wind mechanism in the launching region. By matching the two regions, information about the magneto-centrifugal accelerating mechanism underlying a given astrophysical object can be extrapolated by comparing synthetic and observed position-velocity diagrams (PVDs). We show that quite different jets, like those from the young T Tauri stars DG-Tau and RW-Aur, may originate from the same disk-wind model for different configurations of the magnetic field at the disk surface. This result supports the idea that all the observed jets may be generated by the same mechanism.Comment: 15 pages, 18 figures, accepted for publication by A&

    Dynamical response of a stellar atmosphere to pressure perturbations: numerical simulations

    Get PDF

    Parametric decay of circularly polarized Alfvén waves: Multidimensional simulations in periodic and open domains

    Get PDF
    The nonlinear evolution of monochromatic large-amplitude circularly polarized Alfvén waves subject to the decay instability is studied via numerical simulations in one, two, and three spatial dimensions. The asymptotic value of the cross helicity depends strongly on the plasma beta: in the low beta case multiple decays are observed, with about half of the energy being transferred to waves propagating in the opposite direction at lower wave numbers, for each saturation step. Correspondingly, the other half of the total transverse energy (kinetic and magnetic) goes into energy carried by the daughter compressive waves and to the associated shock heating. In higher beta conditions we find instead that the cross helicity decreases monotonically with time towards zero, implying an asymptotic balance between inward and outward Alfvénic modes, a feature similar to the observed decrease with distance in the solar wind. Although the instability mainly takes place along the propagation direction, in the two and three-dimensional case a turbulent cascade occurs also transverse to the field. The asymptotic state of density fluctuations appears to be rather isotropic, whereas a slight preferential cascade in the transverse direction is seen in magnetic field spectra. Finally, parametric decay is shown to occur also in a non-periodic domain with open boundaries, when the mother wave is continuously injected from one side. In two and three dimensions a strong transverse filamentation is found at long times, reminiscent of density ray-like features observed in the extended solar corona and pressure-balanced structures found in solar wind data
    • …
    corecore