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ABSTRACT

We present a new numerical code, X-ECHO, for general relativistic magnetohydrodynamics (GRMHD) in dynamical spacetimes.
This aims at studying astrophysical situations where strong gravity and magnetic fields are both supposed to play an important role,
such as in the evolution of magnetized neutron stars or in the gravitational collapse of the magnetized rotating cores of massive stars,
which is the astrophysical scenario believed to eventually lead to (long) GRB events. The code extends the Eulerian conservative
high-order (ECHO) scheme (Del Zanna et al. 2007, A&A, 473, 11) for GRMHD, here coupled to a novel solver of the Einstein
equations in the extended conformally flat condition (XCFC). We solve the equations in the 3 + 1 formalism, assuming axisymmetry
and adopting spherical coordinates for the conformal background metric. The GRMHD conservation laws are solved by means of
shock-capturing methods within a finite-difference discretization, whereas, on the same numerical grid, the Einstein elliptic equations
are treated by resorting to spherical harmonics decomposition and are solved, for each harmonic, by inverting band diagonal matrices.
As a side product, we built and make available to the community a code to produce GRMHD axisymmetric equilibria for polytropic
relativistic stars in the presence of differential rotation and a purely toroidal magnetic field. This uses the same XCFC metric solver of
the main code and has been named XNS. Both XNS and the full X-ECHO codes are validated through several tests of astrophysical
interest.
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1. Introduction

The most spectacular phenomena in high-energy astrophysics,
such as those associated to active galactic nuclei (AGNs), galac-
tic X-ray binary systems, or gamma-ray bursts (GRBs), typically
involve rotating compact objects and magnetic fields. In some
cases, such as the merging of binary systems (formed by either
neutron stars, NSs, or black holes, BHs) or the collapse of rotat-
ing cores of massive stars towards an NS or BH, the interplay be-
tween matter, electromagnetic fields, and gravity is so strong that
the MHD equations governing the fluid motions must be solved
self-consistently with the Einstein equations for the spacetime
metric. Even for less violent phenomena,such as the oscillations
of neutron stars (Font et al. 2002), a self consistent solution of
the fluid equations, together with the spacetime evolution, is es-
sential to properly estimate the frequencies of the eigenmodes.
In the case of a binary NS merger, which is a possible mecha-
nism to account for short GRBs, a strong magnetic field could
be produced by the induced shear (Price & Rosswog 2006).
Long GRBs are instead associated to supernova events and to
the core collapse of massive stars (Woosley & Bloom 2006),
leading to the subsequent formation of a rotating and strongly
magnetized compact object. The mainstream collapsar model
(Woosley 1993) implies the rapid formation of a maximally ro-
tating Kerr BH at the center, accreting material from a torus and
likely to lose energy through the Blandford-Znajeck mechanism
(Barkov & Komissarov 2008). However, a promising alternative
for the GRB central engine involves a millisecond magnetar with
B � 1015 G (Usov 1992). The origin of such enormous fields
for magnetars is probably the efficient dynamo action during

the neutrino cooling phase in the hot, deleptonizing proto-NS
(Duncan & Thompson 1992). On the observational side, mag-
netars are the accepted explanation for anomalous X-ray pulsars
and soft gamma-ray repeaters (Kouveliotou et al. 1998).

On the computational side, the past decade has witnessed a
very rapid evolution in the construction of shock-capturing codes
for general relativistic MHD (GRMHD) in both static and dy-
namical spacetimes, with a wealth of astrophysical applications
to the situations outlined above (Font 2008). In the present paper
we describe a novel code for GRMHD in dynamical spacetimes,
named X-ECHO, aimed at studying the evolution of magnetized
relativistic stars and the gravitational collapse of the magne-
tized rotating cores of massive stars. X-ECHO is built on top
of the Eulerian conservative high-order code (Del Zanna et al.
2007) for GRMHD in a given and stationary background met-
ric (Cowling approximation), which in turn has upgraded the
previous version for a Minkowskian spacetime (Del Zanna &
Bucciantini 2002; Del Zanna et al. 2003). ECHO relies on robust
shock-capturing methods within a finite-difference discretiza-
tion scheme (two-wave Riemann solvers and limited high-order
reconstruction routines), with a staggered constrained-transport
method used to preserve the divergence-free condition for the
magnetic field (to machine accuracy for second order of spa-
tial accuracy), as proposed by Londrillo & Del Zanna (2000,
2004). The ECHO code has already been successfully applied
to a variety of astrophysical situations involving magnetized
plasmas around compact objects, like the dynamics and non-
thermal emission of pulsar wind nebulae (Bucciantini et al.
2003; Del Zanna et al. 2004; Bucciantini et al. 2004, 2005a,b;
Del Zanna et al. 2006; Volpi et al. 2008), emission of relativistic
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MHD winds from rotating NSs (Bucciantini et al. 2006), magne-
tar winds producing long GRB jets escaping the stellar progen-
itor (Bucciantini et al. 2008, 2009), and post-merger accreting
disks around Kerr BHs (Zanotti et al. 2010). Although the code
is fully 3D, because of the nature of the sources, invariably a
plasma surrounding a central compact object, all the above ap-
plications were performed in 2D axisymmetric spacetimes using
spherical-type coordinates (either in Minkowski, Schwarzschild,
or Kerr metric). The X-ECHO version presented and tested here
shares the same philosophy, and, in view of the future applica-
tions mentioned above, only the axisymmetric case is consid-
ered.

The Einstein and GRMHD equations in X-ECHO are writ-
ten by fully exploiting the so-called 3 + 1 formalism (like in
ECHO), in which the original equations are split into their tem-
poral and spatial components. The 3 + 1 formalism is nowadays
adopted in basically all numerical schemes for general relativity
(Alcubierre 2008; Baumgarte & Shapiro 2010), where the sys-
tem of Einstein equations is treated like a Cauchy problem with
some initial data to be evolved in time through hyperbolic equa-
tions. However, as for the solenoidal condition for the magnetic
field, non-evolutionary constraints must be preserved in the nu-
merical evolution, and computational methods for modern codes
are divided into two main classes: 1) free-evolution schemes,
mainly based on hyperbolic equations alone, where this prob-
lem is alleviated by appropriate reformulations of the equa-
tions (BSSN: Shibata & Nakamura 1995; Baumgarte & Shapiro
1999), eventually with the addition of propagating modes and
damping terms (Z4: Bona et al. 2003; Bernuzzi & Hilditch
2010); 2) fully constrained schemes, where the constraints are
enforced at each timestep through the solution of elliptic equa-
tions (Bonazzola et al. 2004), a more robust but computation-
ally demanding option, since elliptic solvers are notoriously
difficult to parallelize. Most of the state-of-the-art 3D codes
for GRMHD in dynamical spacetimes are based on free-
evolution schemes in Cartesian coordinates (Duez et al. 2005;
Shibata & Sekiguchi 2005; Anderson et al. 2006; Giacomazzo
& Rezzolla 2007; Montero et al. 2008; Farris et al. 2008), and
have been used for gravitational collapse in the presence of
magnetized plasmas (Duez et al. 2006a; Shibata et al. 2006a,b;
Stephens et al. 2007, 2008), evolution of NSs (Duez et al. 2006b;
Kiuchi et al. 2008; Liebling et al. 2010), binary NS mergers
(Anderson et al. 2008; Liu et al. 2008; Giacomazzo et al. 2009,
2011), and accreting tori around Kerr BHs (Montero et al. 2010).

Provided the emission of gravitational waves is not of pri-
mary interest, a good option in the class of the fully constrained
schemes is represented by the conformally flat condition (CFC)
schemes (e.g. Wilson & Mathews 2003; Isenberg 2008), an
approximation often employed for studying gravitational col-
lapse or NS stability and evolution (Dimmelmeier et al. 2002;
Saijo 2004; Dimmelmeier et al. 2006; Cerdá-Durán et al. 2008;
Abdikamalov et al. 2009). CFC is typically associated to ax-
isymmetric configurations and spherical coordinates, and it is
exact in the spherically symmetric case. Deviations from full
GR solutions in the axisymmetric case for this kind of appli-
cation have already been shown to be negligible (Shibata &
Sekiguchi 2004; Ott et al. 2007), though the nonlinear equations
may show serious uniqueness problems for highly compact NSs
or nascent BHs (see Cordero-Carrión et al. 2009, and references
therein). Moreover, CFC requires the solution of all the ellip-
tic equations for the metric terms at the same time, usually by
means of iteration of Poisson solvers, together with the inversion
of conservative to primitive fluid/MHD variables, another itera-
tive numerical process. All these difficulties have been resolved

recently by the extended conformally flat condition (XCFC) for-
mulation (Cordero-Carrión et al. 2009): all the elliptic equations
(now eight rather than five) are hierarchically decoupled and lo-
cal uniqueness is ensured (see also Saijo 2004), thus this it is our
choice for X-ECHO.

In the present work we propose and test a new numerical
solver based on XCFC for an axisymmetric spacetime in confor-
mally flat spherical-like coordinates. We employed the same nu-
merical grid as was used for the evolution of the fluid and mag-
netic quantities through the ECHO scheme, and the Poisson-like
equations are solved through a hybrid method based on spheri-
cal harmonics decomposition and direct inversion of band diago-
nal matrices, resulting from a second-order finite-difference dis-
cretization of the radial equations, for each harmonic. As a side
product, we built and make available to the community a numeri-
cal code based on XCFC to produce self-consistent GRMHD ax-
isymmetric equilibria for polytropic relativistic stars in the pres-
ence of differential rotation and toroidal magnetic fields, here
named XNS. Both XNS and the full X-ECHO codes are vali-
dated through several tests of astrophysical interest, including
accuracy checks in the initial data for various NS equilibrium
configurations, accuracy in finding the frequencies of their nor-
mal modes of oscillations, an evolutionary test of migration of
NS unstable equilibria to stable branches, a test of the stability
of a differentially rotating, magnetized NS with a toroidal field,
1D and 2D collapse of an unstable NS toward a BH, and a toy
collapse of a differentially rotating NS with poloidal fields, as a
first step towards more realistic magneto-rotational core collapse
simulations.

The paper is structured as follows. In Sect. 2 we introduce
and review the Einstein equations in the 3 + 1 formalism, first
in their general form and then specialized in the CFC approx-
imation, and we review the GRMHD equations. In Sect. 3 we
discuss the new numerical XCFC solver assuming axisymme-
try and spherical coordinates for the conformal flat 3-metric,
whereas the description of our novel XNS code for NS initial
data can be found in Sect. 4. Numerical validation and test-
ing of various cases of NS equilibria, oscillations and collapse
are presented in Sect. 5, while Sect. 6 is devoted to the conclu-
sions. In the following we assume a signature {−,+,+,+} for the
spacetime metric and use Greek letters μ, ν, λ, . . . (running from
0 to 3) for 4D spacetime tensor components, while Latin letters
i, j, k, . . . (running from 1 to 3) are employed for 3D spatial ten-
sor components. Moreover, we set c = G = M� = 1, and we
absorb the

√
4π factors in the definition of the electromagnetic

quantities.

2. Basic equations in the 3 + 1 formalism

In the present section we present the 3 + 1 formalism for
Einstein equations. Further details can be found in recent books
and reviews of 3 + 1 numerical relativity (Gourgoulhon 2007;
Alcubierre 2008; Baumgarte & Shapiro 2010). We briefly dis-
cuss the constrained evolution schemes, focusing on the ellip-
tic CFC and XCFC solvers. Finally, in Sect. 2.3 we review the
GRMHD equations in 3 + 1 conservative form, as implemented
in the original ECHO scheme (Del Zanna et al. 2007).

2.1. The Einstein equations for conformal flatness

The field equations of general relativity expressed in the 4D fully
covariant form

Gμν = 8πTμν, (1)
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where Gμν is the Einstein tensor containing the derivatives of
the metric tensor gμν, and Tμν is the matter and/or electromag-
netic energy-momentum tensor, are not appropriate for numer-
ical computations since time and space are treated on an equal
footing, whereas one would like to cast them in the form of an
initial value (or Cauchy) problem and evolve them in time. The
most widely used approach to this goal is based on the so-called
3+ 1 formalism, in which the generic spacetime (M, gμν) is split
into space-like hyper-surfaces Σt. If n μ indicates the time-like
unit normal to Σt (also known as the velocity of the Eulerian
observer, nμnμ = −1), the induced threemetric on each hypersur-
face and the related extrinsic curvature can be defined respec-
tively as

γμν := gμν + nμnν, (2)

Kμν := −γλμ∇λnν, (3)

where ∇μ is the covariant derivative with respect to gμν (so that
∇λgμν = 0). In general, any fourvector or tensor can be decom-
posed into normal and spatial components by contracting with
−n μ or with the projector γμν , respectively. In particular, both γμν
and Kμν are purely spatial (and symmetric) tensors.

If xμ := (t, xi) are the spacetime coordinates adapted to the
foliation ofM introduced above, the line element is usually writ-
ten in the so-called ADM form

ds2 := gμνdxμdxν = −α2dt2 + γi j

(
dxi + βidt

) (
dx j + β jdt

)
, (4)

where the lapse function α and the shift vector βi (a purely
spatial vector) are free gauge functions. In this adapted coor-
dinate system, the unit normal vector has components n μ =
(1/α,−βi/α) and nμ = (−α, 0i). In the 3 + 1 formalism, the
Einstein equations of Eq. (1) are split into a set of evolutionary
equations for γi j and the extrinsic curvature Ki j

∂tγi j = −2αKi j + Diβ j + D jβi, (5)

∂tKi j = βkDkKi j + KikD jβ
k + KjkDiβ

k − DiD jα

+α
[
Ri j+KKi j−2KikKk

j

]
+4πα

[
γi j(S − E)−2S i j

]
, (6)

plus a set of constraints that must be satisfied at all times

R + K2 − Ki jK
i j = 16πE, (7)

D j

(
Ki j − Kγi j

)
= 8πS i, (8)

named Hamiltonian and momentum constraints, respectively.
Here Di := γμi ∇μ is the covariant derivative with respect to the 3-
metric γi j (so that Dkγi j = 0), Ri j is the Ricci tensor, again with
respect to γi j, R := Ri

i the corresponding Ricci scalar, K := Ki
i is

the trace of the extrinsic curvature. As far as the fluid sources are
concerned E := nμnνT μν, S i := −n μγ

i
νT

μν, and S i j := γi
μγ

j
νT μν

(of trace S := S i
i) are, respectively, the energy density, momen-

tum density, and the stress-energy tensor as measured by the
Eulerian observers.

The constraints introduced above are notoriously difficult to
maintain in the numerical evolution of Eqs. (5) and (6), and two
possible approaches can be followed. The most widely used one
relies on hyperbolic formulations of the initial value problem,
the constraints are imposed only for the initial data, and numer-
ical errors are just monitored or damped during time evolution
(free evolution schemes). On the other hand, the constraints can
be enforced at each timestep during the numerical simulation,

leading to the so-called constrained evolution schemes, where
the main idea is to maximize the number of elliptic equations,
usually more stable than hyperbolic equations. Moreover, in the
steady state case, the set of equations should easily reduce to
those used for stationary spacetimes and for the construction
of initial data. An example is the so-called fully constrained
formalism (FCF) for asymptotically flat spacetimes in full GR
(Bonazzola et al. 2004), which contains the widely used set of
CFC elliptic equations as an approximation. In the following we
describe the general assumptions of conformal flatness and re-
view the set of CFC equations.

We start by applying a Lichnerowicz conformal decomposi-
tion

γi j := ψ4 fi j, (9)

assuming a flat background metric fi j (time independent and not
necessarily in Cartesian coordinates), where the conformal fac-
tor satisfies ψ = (γ/ f )1/12, with f := det fi j. A second assump-
tion is the condition of maximum slicing of foliations

K = 0. (10)

Under these assumptions, to be preserved during time evolution,
the trace of Eq. (5) and its traceless part become, respectively,

∂t ln γ1/2 ≡ ∂t lnψ1/6 = Diβ
i, (11)

2αKi j = Diβ j + D jβi − 2
3

(
Dkβ

k
)
γi j, (12)

where ∂tγ = 0 if, and only if, Diβ
i = 0 and the extrinsic curvature

can be expressed in terms of derivatives of the shift vector alone.
The next step is to use covariant derivatives associated to the
flat 3-metric fi j, which will be indicated here by the usual nabla
operator ∇i (and ∇k fi j = 0). When Eq. (9) holds, it is possible to
demonstrate that the Ricci scalar for γi j (that for fi j is zero) is

R = −8ψ−5Δψ, (13)

in which Δ := ∇i∇i is the usual Laplacian of flat space. The
above relation combined first with the Hamiltonian constraint in
Eq. (7) and then with the trace of Eq. (6) provides the following
two scalar Poisson-like equations for the conformal factor ψ and
the lapse function α

Δψ = −
[
2πE + 1

8 Ki jKi j
]
ψ5, (14)

Δ(αψ) =
[
2π(E + 2S ) + 7

8 Ki jKi j
]
αψ5, (15)

where we still need to write Ki j in terms of flat space derivatives
of the shift vector.

To the traceless extrinsic curvature Ai j := Ki j − 1
3 Kγi j ≡ Ki j

is then applied a conformal time-evolution rescaling

Ki j = ψ−4Ãi j, 2αÃi j := (L β)i j, (16)

where the conformal Killing operator associated to the flat metric
and applied to the vector βi is defined as

(L β)i j := ∇iβ j + ∇ jβi − 2
3

(
∇kβ

k
)

f i j. (17)

This scaling is also employed in the so-called conformal thin
sandwich (CTS) approach to initial data. This scaling is quite
natural, because of Eq. (12), and since, within a conformally flat
decomposition of the metric, we have

(Lγβ)i j = ψ−4(L β)i j, (18)
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where Lγ indicates the conformal Killing operator associated to
γi j. On the other hand, in conformal flatness we also have

D jK
i j = ψ−10∇ j

(
ψ10Ki j

)
, (19)

to be used with the above rescaling in the momentum constraint
to find an equation for βi.

Thanks to all the relations derived so far, the final set of CFC
elliptic equations may be written in terms of the sources and of
Ãi j (containing α and first derivatives of βi) as

Δψ = −
[
2πE + 1

8 fik f jl Ãi jÃkl
]
ψ5, (20)

Δ(αψ) =
[
2π(E + 2S ) + 7

8 fik f jlÃi jÃkl
]
αψ5, (21)

ΔL β
i = 16παψ4S i + 2ψ6Ãi j∇ j

(
αψ−6

)
, (22)

where

ΔL β
i := ∇ j (L β)i j = Δβi + 1

3∇i
(
∇ jβ

j
)
, (23)

is the so-called conformal vector Laplacian operator, associated
to the flat 3-metric fi j and applied to βi.

2.2. From CFC to XCFC

A slightly different approach to the Einstein equations for
asymptotically flat spacetimes has been presented recently
(Cordero-Carrión et al. 2009). This involves a rewriting of the
elliptical part of the FCF system for full GR through a different
decomposition of the extrinsic curvature. Here we just describe
its conformal flatness approximation, leading to the so-called ex-
tended conformal flatness condition (XCFC) system of elliptic
equations, improving on the CFC ones described in the previous
section. The set of XCFC equations is our choice for the metric
evolution in X-ECHO.

The new approach still relies on the usual conformal de-
composition in Eq. (9) and on the maximum slicing condition
of Eq. (10), but the choice for the decomposition of the (trace-
less) extrinsic curvature is different. We use here the momentum-
constraint rescaling and the so-called York conformal transverse
traceless (CTT) decomposition, first introduced for initial data,
that is

Ki j = ψ−10Âi j, Âi j := (LW)i j + Âi j
TT, (24)

where the conformal Killing operator associated to the un-
known vector Wi gives the longitudinal part of Âi j

TT, whereas
Âi j

TT is a transverse (∇ jÂ
i j
TT = 0), traceless ( fi j Â

i j
TT = 0) tensor.

Consistency between the CTS and CTT decompositions (notice
that Âi j = ψ6Ãi j) should require a non-vanishing Âi j

TT. However,
it has been demonstrated that this quantity is even smaller than
the non-conformal part of the spatial metric within the CFC ap-
proach, so can be safely neglected on the level of the CFC ap-
proximation. Thus, as an additional hypothesis,we set

Âi j
TT = 0⇒ Âi j = (LW)i j, (25)

so that Âi j is defined in terms of the auxiliary vector Wi

alone. The latter is derived from the momentum constraint us-
ing Eq. (19), which is simply

∇ jÂ
i j = ΔLWi = 8π ψ10S i, (26)

to be added to the other CFC equations.

The final augmented set of CFC elliptic equations, also
known as XCFC equations, is then the following

ΔLWi = 8π f i jŜ j, (27)

Δψ = −2πÊ ψ−1 − 1
8 fik f jl ÂklÂi j ψ−7, (28)

Δ(αψ) =
[
2π

(
Ê + 2Ŝ

)
ψ−2 + 7

8 fik f jl ÂklÂi j ψ−8
]
αψ, (29)

ΔL β
i = 16π αψ−6 f i jŜ j + 2Âi j∇ j

(
αψ−6

)
, (30)

where for convenience we have introduced rescaled fluid source
terms of the form

Ŝ j := ψ6S j, Ê := ψ6E, Ŝ := ψ6S , (31)

and we recall that

Âi j = ∇iW j + ∇ jWi − 2
3

(
∇kWk

)
f i j. (32)

Some comments and comparisons between the CFC and
XCFC sets of equations are now due.

– There are now 8 rather than 5 (Wi, ψ, α, βi) unknown func-
tions, and this is reflected by the augmented number of ellip-
tic equations. There is a new vector Poisson equation for the
auxiliary variable Wi.

– While all the equations were strongly coupled in CFC, here
the equations can be solved hierarchically one by one, in the
given order, since each right-hand side just contains known
functions or the variable itself (in the two scalar Poisson-like
equations for ψ and αψ).

– As we will see in the next subsection, schemes for general
relativistic hydrodynamics or MHD (like ECHO), given a
metric in 3 + 1 form, actually evolve the conservative vari-
ables γ1/2S j and γ1/2E in time, rather than S i and E. Since
ψ6 = γ1/2/ f 1/2 and f 1/2 is known and time-independent,
the sources Ŝ j and Ê are basically known after each com-
putational timestep without the need of an updated value
of ψ. This will only be needed to work out Ŝ = ψ6γi jS i j,
after the new value of ψ has been provided by Eq. (28)
and the inversion of conservative to primitive variables has
been achieved. Primitive variables are then updated self-
consistently together with the new values for the metric,
whereas this was not possible in CFC. In that case, one could
either use Eq. (11) to derive a guess of the updated ψ (a
method easily prone to both convergence problems and dis-
cretization errors), or one is forced to iterate simultaneously
over the metric solver (the whole CFC set) and the inversion
routine for the primitive variables (typically itself a numeri-
cal iterative Raphson-Newton method).

– The last, and certainly not least, issue is related to the math-
ematical nature of the scalar Poisson-like equations. In both
cases we have a structure of the form

Δu = hup, (33)

where u is the generic variable (ψ or αψ), h is the generic
source term, and p provides the exponent of the non-linearity
(p = 0 for a canonical Poisson equation). It can be demon-
strated that the condition ph ≥ 0 implies that the solution u is
locally unique. While this is always true in XCFC, since we
have two contributions with p = −1 and p = −7, both with
h ≤ 0, in Eq. (28), and one contribution with p = +1 and
h ≥ 0 in Eq. (29), local uniqueness cannot be guaranteed for
the CFC system, since Eq. (21) contains a term that certainly
violates the requirement (the second one, due to the presence
of a factor α−1 in Ãi j).
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2.3. The GRMHD equations and the ECHO scheme

The equations for an ideal, magnetized, perfectly conducting
plasma are

∇μ (ρu μ) = 0, (34)

∇μT μν = 0, (35)

∇μF∗μν = 0, (36)

the continuity equation, the conservation law for momentum-
energy, and the sourceless Maxwell equation, respectively. Here
ρ is the mass density as measured in the frame comoving with
the fluid fourvelocity u μ, and the total momentum-energy tensor
is

T μν = ρh u μuν + pgμν + Fμ
λFνλ − 1

4

(
FλκFλκ

)
gμν, (37)

with h = 1 + ε + p/ρ the specific enthalpy, ε the specific inter-
nal energy, p = p(ρ, ε) the thermal pressure (provided by some
form of equation of state, EoS). Moreover, Fμν is the Faraday
(antisymmetric) electromagnetic tensor, with the associated dual
F∗μν = 1

2 ε
μνλκFλκ, where ε μνλκ = (−g)−1/2[μνλκ] is the space-

time Levi-Civita pseudo-tensor (εμνλκ = −(−g)1/2[μνλκ]), with
g = detgμν, and [μνλκ] is the alternating Levi-Civita symbol.
The system is closed by Ohm’s law for a perfectly conducting
plasma, which becomes a constraint for a vanishing electric field
in the frame comoving with the fluid

Fμνuν = 0. (38)

This basically replaces the Maxwell equation ∇μFμν = −Jν,
where the fourcurrent Jν is a derived quantity as in classical
MHD.

To derive the GRMHD equations in 3+ 1 form, as employed
in ECHO, we must decompose all fourvectors and tensors into
their spatial and temporal components on each slice Σt of the
time evolution. This can be easily achieved by using the unit
normal vector n μ introduced in the previous section

ρu μ := D(v μ + n μ), (39)

T μν := S μν + n μS ν + S μnν + En μnν, (40)

Fμν := n μEν − Eμnν + ε μνλκBλnκ, (41)

F∗μν := n μBν − Bμnν − ε μνλκEλnκ, (42)

where every new quantity is now purely spatial, as measured
by the Eulerian observer. In particular, D := ρΓ is the rest
mass density, vi is the fluid velocity, Γ := (1 − viv

i)−1/2 is the
usual Lorentz factor, whose definition follows from the condi-
tion uμu μ = −1. The stress-energy 3-tensor S i j, its trace S , the
momentum density S i, and the energy density E are the same
quantities appearing in the 3 + 1 Einstein equations (notations
have been slightly modified with respect to the original ECHO
paper), and are respectively given by

S i j = ρhΓ2viv j + pγi j − EiE j−BiB j +
1
2

(
EkEk + BkBk

)
γi j, (43)

S = ρh
(
Γ2 − 1

)
+ 3p + 1

2

(
EiEi + BiBi

)
, (44)

S i = ρhΓ2vi + εi jkE jBk, (45)

E = ρhΓ2 − p + 1
2

(
EiEi + BiBi

)
. (46)

The electric and magnetic fields as measured by the Eulerian
observer are defined as Ei := −n μγ

i
νF

μν and Bi := −nμγi
νF
∗μν.

Because of condition in Eq. (38), the electric field is a derived
quantity precisely as in classical MHD

Ei = −εi jkv
jBk, (47)

where εi jk = γ1/2[i jk] (εi jk = γ−1/2[i jk]) is the Levi-Civita
pseudo-tensor for the 3-metric γi j, and [i jk] is the alternating
symbol taking values +1, −1, or 0.

Thanks to the above decompositions, the GRMHD equations
can be entirely rewritten in terms of purely spatial vectors, while
retaining the original conservation form. We end up with a subset
of fluid-like balance laws in divergence form

∂tU + ∂iF i = S, (48)

plus a magnetic subset with the induction equation in curl form
and the associated divergence-free condition, to be preserved at
all times during evolution

∂tBi + [i jk]∂ jEk = 0, ∂iBi = 0. (49)

The set of conservative fluid variables and the set of associated
fluxes are, respectively

U := γ1/2

⎡⎢⎢⎢⎢⎢⎢⎣
D
S j
E

⎤⎥⎥⎥⎥⎥⎥⎦ , F i := γ1/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(αvi − βi)D
αS i

j − βiS j

αS i − βiE

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (50)

whereas the set of source terms contain the derivative of the met-
ric and thus the curvature effects

S := γ1/2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

1
2αS ik∂ jγik + S i∂ jβ

i − E∂ jα
αKi jS i j − S j∂ jα

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (51)

Here Ki j is the extrinsic curvature introduced in the previous sec-
tion, whose evolution is directly provided by the Einstein equa-
tions in the 3 + 1 formalism, together with γi j, or may be given
in terms of the derivatives of the metric terms. For a dynamical
spacetime under the maximal slicing condition, from Eq. (12)
we can write

αKi jS
i j = 1

2β
jS ik∂ jγik + S j

i ∂ jβ
i − 1

3 [γ−1/2∂i(γ1/2βi)]S , (52)

and the same expression without the last term may be used for
any stationary spacetime (Cowling approximation). As far as the
induction equation is concerned, we have defined

Bi := γ1/2Bi, (53)

Ei := αEi + εi jkβ
jBk=−γ1/2[i jk]

(
αv j − β j

)
Bk, (54)

where the vector αvi − βi is sometimes called transport velocity.
The induction equation may also be written in the equivalent
divergence form as

∂tB j + ∂i{γ1/2[(αvi − βi)B j − Bi(αv j − β j)]} = 0, (55)

and the antisymmetric nature of the magnetic fluxes reflects that
of the original electromagnetic tensor. Regardless of the adopted
choice for the form of the induction equation, we have a final set
of eight hyperbolic equations. Usually the corresponding vari-
ables are named primitive variables, for example the set

P :=
[
ρ, vi, p, Bi

]T
, (56)

for whichU = U(P), F i = F i(P), and S = S(P), where for
simplicity we consider here the augmented system withB j inU.

As discussed in the previous section, the inversion of the
non-linear system U = U(P) to recover the set of primitive
variables is achieved through a numerical iterative scheme and
requires knowledge of the volume element γ1/2, for consistency
updated at the same time level asU. Moreover, as discussed in
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Del Zanna et al. (2007), the conservative to primitive variables
inversion is the most delicate part of a relativistic MHD code,
as high Lorentz factor flows or strong magnetic fields (i.e. in
an NS magnetosphere) may easily lead to errors in the values
of the conservative variables. The whole procedure can be re-
duced to the solution of two coupled nonlinear equations, for any
given EoS. In X-ECHO we leave complete freedom in the choice
p = p(ρ, ε), however in the present paper, given the nature of the
numerical tests proposed, we limit this choice to either an ideal
γ-law EoS

p(ρ, ε) = (γ − 1)ρε, (57)

or to a polytropic law EoS

p(ρ) = Kργ, ε(ρ) =
1

γ − 1
Kργ−1, (58)

where γ and K are given constants. When the first option is used,
the root-finding procedure solves for the variable x = viv

i, ac-
cording to the third method described in the ECHO paper, where
the nested second equation (a cubic) for y = ρhΓ2 can be solved
either analytically or iteratively with an inner loop (and we typ-
ically adopt this latter choice). When S iBi = 0, or in general
for a purely fluid simulation, the equation for y is linear and can
be solved readily. On the other hand, for a polytropic law, the
energy equation becomes redundant, since all thermodynamical
quantities are now functions of the density alone, and the over-
all inversion procedure simply reduces to a root-finding iterative
solver for x.

3. The XCFC solver for axisymmetric spacetimes

The X-ECHO code for GRMHD in dynamical spacetimes is
built upon the ECHO scheme, coupled to a novel solver for the
XCFC equations described in Sect. 2.2. All the necessary defini-
tions and equations have been provided in the previous section,
and we reduce here the equations to the particular implemen-
tation of X-ECHO we are mostly interested in, which assumes
axisymmetric GRMHD configurations, adopting spherical-like
coordinates xi = (r, θ, φ) for the conformal flat metric.

Thus, as a first step we assume in Eq. (9) the usual spherical
coordinates

fi j = diag(1, r2, r2 sin2 θ), (59)

so that

ds2 = −α2dt2 + ψ4
[
(dr + βrdt)2

+ r2
(
dθ + βθdt

)2

+r2 sin2 θ
(
dφ + βφdt

)2
]
, (60)

with f 1/2 = r2 sin θ and γ1/2 = ψ6 r2 sin θ. Moreover, we are
going to consider the axisymmetric case, thus the condition

∂φ ≡ 0, (61)

is assumed throughout the paper. Within the flat metric fi j, it is
convenient to introduce the orthonormal basis eî := (er̂, eθ̂, eφ̂),
with

er̂ := ∂r, eθ̂ := r−1∂θ, eφ̂ := (r sin θ)−1∂φ, (62)

for which fî ĵ = diag(1, 1, 1), where a similar notation as in
Bonazzola et al. (2004) has been assumed. Any generic vector X
can be expressed then in the usual form as

X := Xr̂er̂ + X θ̂eθ̂ + Xφ̂eφ̂, (63)

where the orthonormal (with respect to fi j) components Xî are,
respectively

Xr̂ := Xr, X θ̂ := r Xθ, Xφ̂ := r sin θ Xφ, (64)

while the relation to covariant components still involves the
function ψ, since Xi = ψ4 fi jX j. As far as covariant derivatives
are concerned, the change of basis allows one to use the ∇î op-
erator of spherical coordinates. In particular, the Laplacian of a
generic scalar function u(r, θ) is

Δu = ∂2
r u + 2r−1∂ru + r−2

(
∂2
θu + cot θ ∂θu

)
, (65)

whereas the orthonormal components of the conformal vector
Laplacian are, respectively

(ΔLX)r̂ = ΔXr̂ − 2r−2(Xr̂ + ∂θX
θ̂ + cot θ X θ̂) + 1

3∂r(∇ · X), (66)

(ΔLX)θ̂ = ΔX θ̂ + 2r−2∂θX
r̂ − (r sin θ)−2X θ̂ + 1

3 r−1∂θ(∇ · X), (67)

(ΔLX)φ̂ = ΔXφ̂ − (r sin θ)−2Xφ̂, (68)

where the divergence of X is

∇ · X = ∂rXr̂ + r−1(2Xr̂ + ∂θX
θ̂ + cot θ X θ̂), (69)

precisely the formulae of vector calculus in spherical coordi-
nates.

The Poisson-like elliptic equations used in XCFC to compute
the eight metric terms consist of two scalar equations in the form
of Eq. (33), for the variables u = ψ and u = αψ, and two vector
equations for the generic unknown vector Xi = Wi and Xi =
βi. Due to non-linearity, the scalar equations are better solved
iteratively for the quantity qn := un−1, which in both cases gives
the deviation from asymptotic flatness ψ→ 1 and α→ 1, where
the new value at step n is computed using the previous value at
step n−1 in the source term, until convergence is reached within
some prescribed tolerance. Summarizing, the metric equations
are expressed in one of the two generic forms

Δ qn = Hn−1 ≡ h (1 + qn−1)p , (70)

and, using the orthonormal basis introduced above,

(ΔLX)î = Hî, (71)

where h and H are generic scalar and vector source terms, to
be provided by the XCFC equations, so that both the right-hand
sides above are known functions of (r, θ).

Numerical methods available for solving these elliptic par-
tial differential equations (PDEs) can be divided into three main
categories (see, for methods and discussions Grandclément et al.
2001; Dimmelmeier et al. 2005; Grandclément & Novak 2009):
direct inversion, full relaxation, spectral decomposition. Direct
inversion codes are able to solve the complete system of CFC
(or XCFC) at once using Newton-Raphson solver (or any other
inversion technique) on the entire computational grid over which
the metric solution is desired. They have very good convergence
to machine accuracy within a few steps, but they suffer serious
limitations: the initial guess must be close enough to the solution
to avoid convergence on local minima (instead of global min-
ima). The memory requirement for matrix allocation is typically
very large (usually a sparse matrix is needed in the whole 2D do-
main); in general, direct inversion schemes solve the metric on
smaller grids than the one over which the fluid variables are
evolved and require interpolation between the two, with prob-
lems that may arise at the boundaries. Full relaxation codes use
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SOR, multigrid, or other relaxation techniques. The schemes are
fast and require little memory allocation, but usually suffer from
poor convergence properties: the convergence is in general slow
(compared to direct or spectral schemes) and might fail on the
axis or at the center due to the singular nature of some met-
ric elements. Spectral schemes decompose the set of CFC (or
XCFC) equations using a combination of spherical harmonics
(based on Legendre polynomials) in the angular directions and
Chebyshev polynomials in the radial direction. This ensures a
correct behavior on the axis and at the center even with a lim-
ited number of eigenfunctions, but they require specific grids and
sometimes complex compactifications or multi-domain decom-
position techniques with appropriate boundary conditions for
each multipole and each domain. The metric solver in X-ECHO
uses a mixed technique. In the angular direction we use a decom-
pition in spherical harmonics, to preserve the correct asymptotic
form on the axis. However, the set of ordinary differential equa-
tions (ODEs) obtained for each harmonic is then solved using di-
rect inversion over the same radial grid as in the GRMHD code,
with no need for interpolation or compactification. At second-
order accuracy in a finite difference discretization, the scalar
equations reduce to the simple inversion of tridiagonal matri-
ces (band diagonal matrices for the poloidal components of the
vector Poisson equations), where appropriate solvers are fast, re-
quire little memory allocation, and typically converge with high
accuracy.

For the scalar Poisson-like Eq. (70) we then decompose, for
each level n of iteration (here omitted), the unknown q as

q(r, θ) :=
∞∑

l=0

[Al(r)Yl(θ)] , (72)

where

Yl(θ) ≡ Y0
l (θ) :=

√
2l+1
4π Pl(cos θ), (73)

with Pl the Legendre polynomial of degree l and the axisym-
metry condition has been imposed (m = 0). The PDE, where
the Laplacian is provided in Eq. (65), may then be split into the
series of radial ODEs for each harmonic l

d2Al

dr2
+

2
r

dAl

dr
− l(l + 1)

r2
Al = Hl, (74)

where the new source term is

Hl(r) :=
∮

H(r, θ)Yl(θ)dΩ, (75)

with dΩ = 2π sin θdθ and the integral running from θ = 0 to
θ = π due to axisymmetry.

As far as the vector Poisson equation in Eq. (71) is con-
cerned, the unknown vector X is first decomposed into vector
spherical harmonics, that is, in the axisymmetric case

X(r, θ) :=
∞∑

l=0

[
Al(r)Yl(θ)er̂ + Bl(r)Y′l (θ)eθ̂ +Cl(r)Y′l (θ)eφ̂

]
, (76)

where Y′l := dYl/dθ. As is apparent from the operators in
Eqs. (66)–(69), the set of equations split into a series of ODEs
with, for each harmonic l, a coupled poloidal part for the radial
functions Al(r) and Bl(r)

4
3

d2Al

dr2
+

8
3r2

(
r

dAl

dr
−Al

)
− l(l+1)

r2

(
Al +

r
3

dBl

dr
− 7

3
Bl

)
= Hr̂

l , (77)

d2Bl

dr2
+

2
r

dBl

dr
− 4l(l+1)

3r2
Bl +

1
3r

dAl

dr
+

8
3r2

Al = H θ̂
l , (78)

and a toroidal part

d2Cl

dr2
+

2
r

dCl

dr
− l(l + 1)

r2
Cl = Hφ̂

l , (79)

for Cl(r) alone. The new source terms are given by

Hr̂
l (r) :=

∮
Hr̂(r, θ)Yl(θ)dΩ, (80)

H θ̂
l (r) :=

1
l(l + 1)

∮
H θ̂(r, θ)Y′l (θ)dΩ, (81)

Hφ̂
l (r) :=

1
l(l + 1)

∮
Hφ̂(r, θ)Y′l (θ)dΩ. (82)

These integrals, as well as that in Eq. (75), are computed in
X-ECHO by using Gaussian quadrature points, so the original
source terms must first be interpolated on the required locations.

As anticipated, we use finite differences and a second-order
approximation for first and second spatial derivatives, so that, for
each harmonic l, the two coupled poloidal equations are reduced
to the inversion of a sparse matrix of bandwidth 7, whereas the
toroidal equation leads to a tridiagonal matrix (standard open
source routines are employed in their solution). Boundary con-
ditions at r = 0 and r = rmax are given by the parity and asymp-
totic properties of the multipole corresponding to the harmonic l.
In particular, we assume that at the center Al(r) has parity (−1)l,
whereas Bl(r) and Cl(r) have parity (−1)l+1, and the multipoles
are forced to decay as r−l(l+1) at large distances from the central
sources.

4. Axisymmetric GRMHD equilibria: the XNS code

One of the most common applications of the fully constrained
formalism is the search for self-consistent (axisymmetric) equi-
librium configurations (i.e. fluid quantities and metric) for com-
pact relativistic stars (we simply refer to these objects with the
term NS), a typical case of initial data problem in GR (Cook
2000; Stergioulas 2003; Gourgoulhon 2010). Several codes have
been presented in the years to address this issue (Komatsu
et al. 1989a,b; Cook et al. 1994; Stergioulas & Friedman 1995;
Nozawa et al. 1998; Bonazzola et al. 1998; Kiuchi & Yoshida
2008), and, despite the different approaches and upgrades (e.g.
differential rotation, toroidal magnetic field), all of them adopt
the so-called quasi-isotropic coordinates. Under the conditions

∂t ≡ 0, ∂φ ≡ 0, (83)

we write here the corresponding line element in the form

ds2 = −α2dt2 + ψ4(dr2 + r2dθ2) + R2(dφ − ωdt)2, (84)

which resembles that of the CFC metric for axisymmetric space-
times of Eq. (60) in spherical coordinates and reduces to it when

R = ψ2r sin θ, (85)

where only in this case the function ψ in Eq. (84) recovers the
meaning of conformal factor. In general, we can think the met-
ric function R := γ1/2

φφ is a sort of generalized cylindrical radius,
whereasω := −βφ is the intrinsic angular velocity about the sym-
metry axis of the zero angular momentum observers (ZAMOs:
Bardeen et al. 1972), which are the normal (Eulerian) observers
for an axisymmetric spacetime. When ω = 0, the spacetime
is spherically symmetric and the two metrics both reduce to

A101, page 7 of 18



A&A 528, A101 (2011)

the one in isotropic Schwarzschild coordinates. In the follow-
ing we briefly re-derive the GRMHD equilibrium condition (a
Bernoulli-like integral) for purely toroidal flows and magnetic
fields in quasi-isotropic coordinates. More general derivations
can be found in (Kiuchi & Yoshida 2008) or (Komissarov 2006).
This latter work applies to magnetized tori around rotating BHs
(see also the final numerical test in Del Zanna et al. 2007).

The only non vanishing components of the spatial (Eulerian)
3-vectors vi and Bi are the azimuthal ones, and the corresponding
moduli are

v := (vφv
φ)1/2 = Rvφ = α−1R(Ω − ω), (86)

B := (BφBφ)1/2 = RBφ, (87)

where we have used the 3 + 1 relations uφ = Γ(vφ + ω/α),
ut = Γ/α, and we definedΩ := uφ/ut = dφ/dt, the angular veloc-
ity of the fluid seen by an observer at rest at infinity (a function
of r and θ for a differentially rotating NS). The equilibrium con-
dition we are looking for can be derived directly from the 3 + 1
conservative form of the GRMHD equations, in which the only
non vanishing contribution comes from the two poloidal compo-
nents of the momentum conservation in Eq. (48)

γ−1/2∂ j

[
γ1/2α

(
p + 1

2 B2
)]
− α(p + 1

2 B2) 1
2γ

ii∂ jγii

− α
(
ρhΓ2v2 − B2

)
1
2 R−2∂ jR2 + ρhΓ2Rv ∂ jω

+
(
ρhΓ2 − p + 1

2 B2
)
∂ jα = 0, (88)

where j is either r or θ, and we recall that the electric field van-
ishes. Recalling that 1

2γ
ii∂ jγii = γ−1/2∂ jγ

1/2 and differentiating
the definition of v, after a few algebraic steps the following con-
dition can be found:

∂ j p

ρh
+ ∂ j lnα − ∂ j lnΓ +

Γ2v2∂ jΩ

Ω − ω +
∂ j(α2R2B2)

2α2R2 ρh
= 0. (89)

Integrability of this equation demands the following conditions:

– a barotropic EoS, p = p(ρh). The simplest choice and the
most common assumption is a polytropic law

p = Kρ1+1/n ⇒ h = 1 + (n + 1)Kρ1/n, (90)

where n is the polytropic index (the corresponding adiabatic
index is γ = 1 + 1/n);

– the quantity F := uφut ≡ Γ2v2/(Ω−ω), related to the specific
angular momentum � := −uφ/ut, is a function of the angular
velocity Ω alone. A commonly adopted differential rotation
law (e.g. Stergioulas 2003) is

F(Ω) = A2(Ωc −Ω) =
R2(Ω − ω)

α2 − R2(Ω − ω)2
, (91)

where Ωc is the central angular velocity and A is a measure
of the differential rotation rate. For uniform rotators Ω ≡ Ωc
(and A → ∞), and this contribution can be excluded from
the Bernoulli integral;

– a sort of magnetic barotropic law, where αRB is a function
of α2R2ρh. The simplest choice is a magnetic polytropic law

αRB = Km(α2R2ρh)m, (92)

where m is the magnetic polytropic index, with m ≥ 1
(Kiuchi & Yoshida 2008).

Using the above prescriptions we can easily derive the final
GRMHD Bernoulli integral

ln
h
hc
+ln

α

αc
−lnΓ−A2

2
(Ωc−Ω)2+

mK2
m

2m − 1
(α2R2ρh)2m−1=0, (93)

where again we indicate values at the center with the subscript c.
The above derivation is exact for quasi-isotropic coordinates

and obviously also applies to the CFC subcase. In the non-
magnetized case, it has been demonstrated that, even for rapid
rotators close to the mass shedding limit (see Sect. 5.3), so-
lutions obtained with the RNS numerical code (Stergioulas &
Friedman 1995) show very little deviations from a CFC met-
ric, so one should expect the CFC limit to provide a reason-
ably good approximation of the correct solution for compact
relativistic stars. Given the above-mentioned computational ad-
vantages in the solution of the XCFC system of equations
with respect to the original set of coupled PDE of fully con-
strained schemes, our choice has been to build a novel numer-
ical code (written in Fortran90), which we name XNS and
which can be freely downloaded at http://sites.google.
com/site/niccolobucciantini/xns This takes advantage
of the same XCFC metric solvers as were developed for the
X-ECHO scheme described in this section. A comparison be-
tween equilibria found with XNS and RNS is presented in
Sect. 5.3, together with a discussion of the results.

XNS employs a self-consistent method in the search for the
axisymmetric equilibrium solutions of relativistic compact stars,
in the presence of differential rotation and a purely toroidal mag-
netic field, thus metric terms and fluid-like quantities are derived
at the same time. Given the values of the six free parameters
K, n, A,Ωc,Km,m, plus a guess for the central density ρc, the fol-
lowing steps are taken

– A starting guess for the CFC metric terms (α, ψ, ω) is pro-
vided from the previous step, with R given by Eq. (85). The
first time, the spherically symmetric Tolman-Oppenheimer-
Volkoff (TOV) solution in isotropic coordinates (Tolman
1934), for the metric of a non-rotating and non-magnetized
NS with a central density value ρc, is computed through a
shooting method for ODEs.

– On top of these metric terms and for each grid point, Ω is
derived by inverting Eq. (91), then v (and Γ) can be deter-
mined from Eq. (86). Finally, hc is a known function of ρc
and the Bernoulli integral in Eq. (93) is solved via a Newton
method to find the local values of h and ρ, allowing us to also
determine the magnetic field strength from Eq. (92).

– The new conserved quantities Ê, Ŝ j are derived by combin-
ing the updated fluid quantities with the old metric.

– The set of XCFC equations is solved for this set of con-
served variables, and a new metric computed. Here only the
azimuthal components for the vector Poisson equations are
treated, in order to find Wφ and then βφ. We recall here that
the conservative to primitive variables inversion must be en-
forced between the solutions to the two scalar Poisson-like
equations, namely after the new value of ψ is found and be-
fore that of α.

These steps are repeated until convergence to a desired tolerance
is achieved. However, a word of caution is in order here. Since
XNS is based on the XCFC metric solver, which works on the
conservative variables densitized with ψ6, convergence is actu-
ally enforced on the central value of the quantity D̂ := ψ6D =
ψ6 ρc. Therefore, given that the final conformal factor ψ for the
self-consistent 2D equilibrium may be quite different from the
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one derived from the radial TOV solution at the first step, the
final value of ρ at the center is expected to differ from the pa-
rameter ρc in the Bernoulli integral. If one wants to find an equi-
librium converging exactly to a central density ρc, an additional
overall iterative loop is needed.

Before concluding this section, some remarks are in order.
One might question the choice of a purely toroidal field versus
a more realistic configuration including a poloidal component.
However, equilibrium with poloidal fields is only possible for
uniform rotators, with magnetic field fully confined within the
star. It is well known (Goldreich & Julian 1969) that any poloidal
magnetic field extending outside a rotating NS will eventually
lead to a spin-down of the same, even for a dipole aligned with
the rotation axis, unless the star is surrounded by a true vacuum.
A low charge density of about 1020 cm−3 pairs is enough to break
this assumption, even in the case of millisecond rotators with
B ∼ 1017 G, and the timescale to replenish an evacuated magne-
tosphere is close to the rotation period. For such strong magnetic
fields, affecting the overall equilibrium of the NS and providing
a non negligible contribution to the global stress-energy tensor
in the Einstein equations (lower fields have small dynamical ef-
fects and can be easily treated as perturbations), the problem be-
comes particularly severe because the typical spin-down time for
millisecond rotators can be as short as 50 ms. Weaker magnetic
field can lead to much longer spin-down times, and those con-
figurations might be considered quasi-equilibrium cases, at least
for the time of a typical numerical run (a few thousands M).
However they are of little interest, as stated above.

One might also question whether purely toroidal configura-
tions are stable, and, if not, what is the growth rate of instabili-
ties. A recent study of the stability properties of neutron star with
strong toroidal field has been presented by Kiuchi et al. (2008).
Their results show that non-rotating neutron stars with a mag-
netic polytropic law with m ≥ 2 are always unstable and that
(uniformly) rotating systems are stable only if their kinetic en-
ergy exceed the magnetic energy by at least a factor 5. However,
even if their conclusions about stability are supported by numer-
ical simulations, it must be pointed out that their criterion is de-
rived analytically only in the Newtonian regime, where magnetic
field and spacetime metric are not coupled. Moreover, their full
GR results do not consider intermediate cases with 1 < m < 2,
thus further investigation is certainly needed.

5. Numerical results

We present here a set of numerical tests of the X-ECHO scheme.
Standard HD/MHD tests in a static background metric (Cowling
approximation) have already been presented elsewhere both for
a flat metric (Del Zanna & Bucciantini 2002; Del Zanna et al.
2003) and for a given stationary curved spacetime (Del Zanna
et al. 2007). As discussed in the introduction, the performances
of the ECHO code in astrophysical scenarios involving a vari-
ety of different conditions such as strong shocks, relativistic out-
flows, strong gravity, and highly magnetized systems, have also
already been assessed in numerous papers. For these reasons,
the results presented here focus mostly on evaluating the qual-
ity of our novel metric solver and on the performances of the
HD/MHD ECHO algorithms when coupled with a dynamical
spacetime. Moreover, the original ECHO scheme was designed
for high-order accuracy, whereas the metric solver implemented
in X-ECHO is formally only second order in space. Given that
the performances of high-order reconstruction techniques have
already been tested (Del Zanna et al. 2007), for simplicity, we
have decided to limit our set-up to second order accuracy, both

in space and time, which is always a good compromise between
efficiency, accuracy, and robustness.

As discussed in the introduction, only in recent years have
stable numerical schemes for GRMHD in dynamical spacetimes
started to appear. This, together with the intrinsic degrees of free-
dom in the choice of gauge and coordinate systems typical of
GR, have resulted in a lack of well-defined, agreed-upon, stan-
dard numerical tests (in the spirit as that of shock-tube problems
in flat spacetime or accretion/outflows solutions for a station-
ary curved metric). While in 1D a few problems have emerged
as standard benchmarks, this cannot be said about multidimen-
sional cases yet, also because of a lack of analytical solutions for
fully multidimensional dynamical problems. Some of the tests
that we selected here, have already been published in the liter-
ature, using different numerical schemes, both fully constrained
(Dimmelmeier et al. 2002; Stergioulas et al. 2004; Dimmelmeier
et al. 2006; Cordero-Carrión et al. 2009) and hyperbolic (Font
et al. 2002; Bernuzzi & Hilditch 2010), so that we can validate
our code against existing results. Some other have been done in
the perturbative regime and compared with the results of linear
theory, and when possible also with previous numerical simula-
tions. However, in an attempt to evaluate the performances under
different conditions, we also present some novel cases.

Unless otherwise stated, in all our numerical tests we use a
Courant number of 0.4, an ideal gas EoS with γ = 2 (corre-
sponding to a polytropic index n = 1 for the initial data in XNS),
and we solve the full GRMHD system, including the equation
for the total energy density E, often neglected in isentropic tests
for a given polytropic law. For the approximate Riemann solver,
we use the HLLC solver by Mignone & Bodo (2006) here for the
first time, which was never applied before to GRMHD studies in
curved, evolving spacetimes, to our knowledge. This choice is
imposed by the sharp transition between the rotating NS and the
external atmosphere, since the two-wave solver HLL is found to
be too diffusive on the contact discontinuity.

In almost all of our tests we have included an extended at-
mosphere in the domain, which is left free to evolve and respond
to the evolution of the NS. This choice was dictated by the astro-
physical problems we are mostly interested in, and toward which
the X-ECHO scheme has been developed. Problems which
involve the ability to simultaneously handle the high-density
NS and any low-density outflow/atmosphere/magnetosphere that
might surround it. We are aware that a common practice in the
literature is to reset floor values outside the NS, but we believe
that this procedure may in principle lead to violations of conser-
vation properties of the scheme at the NS surface. For the same
reasons, as stated above, simulations have been performed us-
ing an ideal gas EoS, which allows us to handle systems where
matter in different thermal conditions (a cold NS versus a hot
atmosphere) is present.

Reconstruction at cell boundaries is achieved for simplicity
through a monotonized-central (MC) algorithm, though the other
choices described in the appendix of Del Zanna et al. (2007) are
also possible. The XCFC metric solver is invoked every 10 steps
of the HD/MHD Runge-Kutta evolution scheme. In 2D runs we
use 50 Gaussian quadrature points and 20 spherical harmonics.
With these settings, we have managed to make the computa-
tional time taken by the metric solver, usually slower, compa-
rable to the time taken by a single Runge-Kutta cycle of the fluid
solver. Thus, solving XCFC at every fluid step will only double
the overall times, but no significant improvement has been no-
ticed in the results. Finally, grid spacing will be constant both
along the radial direction r and the polar angle θ, so the number
of points are enough to specify the grid in each direction.
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5.1. Stability of a TOV stable radial solution

Our first test consists in the evolution of a stable 1D radial
NS configuration. We adopt, as initial condition, a solution of
the TOV equations in isotropic coordinates, corresponding to
a polytropic gas with K = 100, n = 1, and central density
ρc = 1.280 × 10−3, a model also known as A0 (AU0) or B0
(BU0) in the literature (Font et al. 2000; Stergioulas et al. 2004;
Dimmelmeier et al. 2006). This corresponds to an NS extend-
ing to a radius r = 8.13. It is possible to show that this star
lies on the stable part of the mass-radius curve, so we expect the
code to be able to maintain this configuration for longer times
than their typical sound crossing time (∼0.5 ms). Outside the
star we assume, at the beginning of the run, a low density and
hot (ρ � 10−7, p/ρ � 0.2) atmosphere in hydrostatic equilib-
rium (αh = const.), in pressure balance at the surface of the NS.
Contrary to previous treatments, where the atmosphere was reset
at every time step to keep it stationary, we leave it free to evolve
(collapse or expand) in response to the NS oscillations. Given
its low density, the atmosphere has negligible feedback on the
star. The simulation is performed using 625 grid points in the
radial domain r = [0, 20], corresponding to a star resolved over
250 points. The evolution is followed for a time tmax = 1500
corresponding in physical units to �7.5 ms.

Figure 1 shows a comparison between the initial density pro-
file and that at tmax, together with a plot of the central density ρc
as a function of time. Relative variations in density in the NS in-
terior are on order of 10−4, with major deviations only at the
contact discontinuity of the NS surface, due to diffusion over the
much lower density atmosphere. This triggers the natural vibra-
tion modes of the NS, which are the observed fluctuations, which
are the natural outcome of this physical system. The central den-
sity, plotted in the insert of Fig. 1, shows fluctuations on order of
10−3 at most, but no sign of any secular trend. This is due to the
large number of points over which the star is resolved. The slow
damping of the oscillations, from 10−3 to a few 10−4, comes from
the thermal dissipation associated to the use of an ideal gas EoS
and to the numerical viscosity of the scheme, whereas it is not
present if a polytropic EoS is used (see next Sect. 5.2 for a com-
parison between the two EoS). At the beginning of the simula-
tion we observe a relaxation of the central density to a value that
is ∼2 × 10−4 lower than the initial condition, probably because
of discretization errors. However the average value seems to re-
main constant at later times. This shows the ability of the code
to maintain a stable equilibrium, even for several (∼10) sound
crossing times. It also shows that the presence of a dynamical
atmosphere causes no problem for the stability of the TOV solu-
tion. In contrast, the atmosphere itself seems to be quite stable,
as shown by the fact that its density changes by a factor smaller
than 1%.

In the bottom panel of Fig. 1 we plot a Fourier transform
of the central density in time. Markers indicate the positions of
the known eigenmodes. This is a test of the performance of the
code in handling a dynamical spacetime, at least in the linear
regime, for small perturbations. The values of the eigenmodes,
the fundamental in particular, are quite different in the Cowling
approximation where the metric is kept fixed in time (Font et al.
2002). It is also interesting to note that no initial perturbation has
been introduced and that the oscillations of the star are only due
to the relaxation of the initial conditions and possible round off-
errors. Indeed, the large power present in the higher frequency
modes suggests that the initial excitation is confined to small
scales, most likely at the surface of the star. The presence of a

Fig. 1. Evolution of a stable TOV solution in spherical symmetry and
isotropic coordinates. The upper panel shows a comparison between
density in the initial solution (solid line) and the result at tmax = 1500
(diamonds). For clarity the result a tmax is shown every 5 points. The
insert shows the residuals. The spike at r ≈ 8 comes from to diffusive
relaxation at the NS boundary. The middle panel shows the relative vari-
ations in time of the central density. The lower panel shows the Fourier
transform of the central density. The solid line and diamonds indicate
the power of the Fourier series in arbitrary units. The vertical markers
indicate the frequency of known eigenmodes. The frequency resolution
of our time series is ∼150 Hz.

freely evolving atmosphere does not seem to affect the frequency
of the modes, at least within the accuracy of our temporal series.

5.2. Migration of an unstable TOV radial solution

A genuinely non-trivial situation in the fully non-linear regime,
involving large variations in the metric and fluid structure, is
the migration of an unstable 1D TOV solution. Following Font
et al. (2002), Cordero-Carrión et al. (2009), and Bernuzzi &
Hilditch (2010), we select a solution of the TOV equations in
isotropic coordinates, corresponding to a polytropic gas again
with K = 100, n = 1, and central density ρc = 7.993 × 10−3.
This corresponds to a star extending to a radius r = 4.26, on the
unstable part of the mass-radius curve. The external atmosphere
is set as in the previous test. Due to truncation errors and the
initial relaxation of the NS/atmosphere transition, this configu-
ration migrates to the stable branch. This evolution causes large
amplitude pulsations and the formation of a shock between the
outer mantle and inner core of the star, where part of the kinetic
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Fig. 2. Evolution of the central density for the migrating unstable
TOV solution in spherical symmetry and isotropic coordinates. The
solid line is the evolution for an ideal gas EoS, the dotted line is the
evolution for a polytropic EoS. The horizontal dashed line indicates
the density of the stable TOV solution corresponding to the same mass
ρc = 1.650 × 10−3.

energy is dissipated into heat. During the evolution the star ex-
pands to quite large radii. The run is done using 900 grid points
in the radial domain r = [0, 30]. A small fraction of the stel-
lar mass (less than ∼10−3) is lost at the outer radius during the
first bounce. The evolution is followed for a time tmax = 1500
corresponding in physical units to �7.5 ms.

Figure 2 shows the evolution of the central density in time.
Results agree with what has been presented previously, includ-
ing the amplitude of the fluctuations, the value of the density at
the first minimum and at the first and second maxima, the fre-
quency of the oscillations, their non-sinusoidal shape, and the
asymptotic value of the central density with respect to the ex-
pected value for a stable configuration with the same mass. As
already noted in Font et al. (2002), the lower average central
density at later times (with respect to that of a stable model with
the same mass) is due to shock heating during the bounce phase,
which changes the thermal content of the star. We repeated the
same simulation using a polytropic EoS for the NS (while the
ideal gas EoS is still used for the free atmosphere). Results are
shown in Fig. 2. It is evident that the oscillations are not damped
for a polytropic EoS, and the system appears to converge to the
correct asymptotic value of the central density. Comparison with
previous results (Font et al. 2002; Cordero-Carrión et al. 2009)
agrees both in the amplitude of the oscillations and in their phase
shift with respect to the case with an ideal gas EoS.

5.3. Accuracy of uniformly rotating 2D equilibria

Following Sect. 4, we built a series of 2D equilibrium models for
rigidly rotating neutron star in the XCFC approximation for the
metric. The computational grid covers the domain r = [0, 20]
and θ = [0, π], with 650 zones in radius and 100 zones in
angle. In this section we compare them with equivalent mod-
els built using the publicly available code RNS (Stergioulas &
Friedman 1995; Nozawa et al. 1998; Stergioulas 2003), which
for us constitutes a reference benchmark. RNS is an accurate
solver for non-magnetized, uniformly rotating NS configurations
in quasi-isotropic coordinates, for which we recall that in 2D
R2 � ψ4r2 sin2 θ in Eq. (84). This is both a test of the qual-
ity of the XCFC approximation, for genuinely non-spherically
symmetric systems and an evaluation of the performances of
our metric solver. We have selected the BU series of models
from the literature (Stergioulas et al. 2004; Dimmelmeier et al.
2006), with a fixed central density ρc = 1.280 × 10−3, the usual

Table 1. Comparison between RNS and XNS for rigidly rotating com-
pact stars.

Model Ω M re rp/re

(×10−2) RNS XNS RNS XNS RNS XNS
BU0 0.000 1.400 1.400 8.13 8.13 1.00 1.00
BU1 1.075 1.432 1.433 8.33 8.34 0.95 0.95
BU2 1.509 1.466 1.468 8.58 8.56 0.90 0.90
BU3 1.829 1.503 1.505 8.82 8.85 0.85 0.85
BU4 2.084 1.543 1.455 9.13 9.15 0.80 0.80
BU5 2.290 1.585 1.586 9.50 9.52 0.75 0.75
BU6 2.452 1.627 1.629 9.95 9.98 0.70 0.70
BU7 2.569 1.666 1.667 10.51 10.53 0.65 0.65
BU8 2.633 1.692 1.693 11.26 11.30 0.60 0.60
BU9 2.642 1.695 1.698 11.63 11.60 0.58 0.58

Notes. Gravitational masses are in units of M�, re, and rp are the equa-
torial and polar radii.

polytropic law with K = 100, n = 1, but different values of the
uniform rotation rates. Table 1 presents the models and compares
some global properties derived using RNS with those derived
using our implementation of the XCFC solver in XNS. Results
agree within the accuracy of the models themselves (Δr = 0.03).
The model BU9 represents an equilibrium at the mass-shedding
limit, and it is particularly sensitive to accuracy and round-off
errors. Indeed, when solving the Bernoulli condition Eq. (93) to
derive the matter distribution, in the case of model BU9, we had
to impose the further condition ρ = 0 for r > 11.6, to avoid
unbounded solutions.

In Fig. 3 we show the comparison between the model BU8
(we already pointed out the problems for model BU9) derived
using our solver for the CFC metric and the solution of RNS. It is
clear that the CFC approximation provides a good description of
the matter and fluid properties of the equilibrium configuration,
throughout the entire star. The densities along the polar axis and
at the equator, together with the velocity profile v := (vφvφ)−1/2,
are all well reproduced. In terms of the metric coefficient, we
see that the discrepancy is of order 10−3, and is comparable with
the level of approximation of the conformally flat condition, de-
fined as the difference between ψ and [R/(r sin θ)]1/2 in Eq. (84).
Somewhat larger deviations, of a few 10−3 in the NS interior,
are characteristic of the shift βφ, increasing at larger radii where
the value of the shift approaches zero, analogously to what was
observed by Dimmelmeier et al. (2002).

5.4. Stability of uniformly rotating 2D equilibria

In the same spirit as for the numerical test presented in Sect. 5.1,
we show here the result of a time evolution of two equilib-
rium configurations, BU2 and BU8. They correspond to a mildly
rotating star and to a case of rapid rotation, respectively. The
initial conditions are derived according to the recipe given in
Sect. 4 in conformally flat metric, and their accuracy has already
been discussed in the previous section. The domain, r = [0, 16]
and θ = [0, π], is spanned by 200 zones in the radial direc-
tion and 100 zones in angle. The star is resolved on average
over about 100 radial zones. The evolution is followed for a
time tmax = 1500, corresponding in physical units to �7.5 ms.
As in the previous tests, we initialize a hot and low density at-
mosphere outside the star, initially in equilibrium, and then al-
lowed to freely evolve in time. As already noted in the previous
1D cases, the presence of this freely evolving atmosphere has
negligible dynamical effects on the star, even in 2D, due to its
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Fig. 3. Comparison between RNS and XNS solutions for model BU8.
The upper panel shows the fluid quantities. The solid (dotted) line rep-
resents the density at the equator (polar axis) derived using RNS, both
normalized against ρc. The dashed line is the profile of the rotational
velocity module v, normalized to its maximum (0.37462). Diamonds,
crosses and pluses represent values of the same quantities as derived us-
ing XNS, where we report one symbol every 5 radial points for clarity.
The lower panel shows the residual of various metric terms at the equa-
tor. The green solid line is the relative error between the lapse α com-
puted with XNS and RNS. Dashed magenta and dotted blue lines repre-
sent the relative error between the conformal factor ψ of the CFC metric
with respect to the one in quasi-isotropic coordinates and the quantity
[R/(r sin θ)]1/2. The dot-dashed red line represents the difference be-
tween ψ and [R/(r sin θ)]1/2 both computed in quasi-isotropic coordi-
nates, and can be considered a measure of the non conformal flatness of
the RNS solution.

low density, and there is no need to enforce a reset to the initial
values.

For the model BU2, Fig. 4 compares the equatorial and axial
densities, together with the module of the rotational velocity v,
at time t = 0 and t = tmax. The evolution of the central density is
also shown. The oscillations on order or 10−3 are due to the ex-
citation of the stellar eigenmodes by initial round-off errors and
relaxation at the boundary between the star and the atmosphere.
No initial perturbation was introduced into the model. Changes
in the value of the equatorial density at the end of the run with
respect to the initial values are close to the amplitude of the oscil-
lations that are excited by the initial relaxation. A small secular
drift of ∼5 × 10−4 in the average value of the central density is
visible by the end of the run. It stems from the lower number
of points in the radial direction over which the star is resolved
(∼100), compared to the 1D case (∼250) where no drift was ob-
served. In the bottom panel of Fig. 4, we plot a Fourier transform
of various fluid quantities in time. The quantities are all mea-
sured at a selected location inside the star: r = 3.0 and θ = π/4.
Normal mode analysis is beyond the scope of this paper, so here
we just present a simple single-point analysis. Selecting other

Fig. 4. Evolution of a stable BU2 solution. The upper panel shows a
comparison between the initial values (solid lines) of equatorial (green)
and axial (blue) densities and of equatorial rotational velocity v (ma-
genta), against the value of the same quantities at at tmax = 1500 (dashed
lines). The densities are normalized to the central initial value ρc, the
velocity to its maximum initial value (0.1619). The insert shows the rel-
ative difference between the equatorial densities as a function of radius.
The spike at r ≈ 8 is due to diffusion at the NS surface, also partly visi-
ble in the velocity profile. The middle panel shows the variation in time
of the central density. The bottom panel shows the Fourier transform
of the the density (green solid line), vr (red dotted line), vφ (magenta
dashed line), and vθ (blue dot-dashed line), at the point r = 3.0, θ = 45◦
of model BU2. The vertical markers indicate the frequency of known
eigenmodes. The frequency resolution of our time series is ∼150 Hz.

points in the star does not change the location of the peaks in the
power series (though it affects their relative amplitude). Given
that no perturbation is introduced in the initial data, modes are
excited differently, depending on the initial relaxation (certain
modes cannot in principle even be excited). Markers indicate the
positions of the known l = 0, l = 2, and l = 4 eigenmodes
(Dimmelmeier et al. 2006). This is a test of the performance
of the code in handling an axisymmetric dynamical spacetime,
at least in the linear regime for small perturbations. The funda-
mental F and first overtone H1 of the l = 0 mode are correctly
recovered, together with the 2 p1 for the dipolar l = 2 mode, and
the 4 p1 for the quadrupolar l = 4 mode. The 2 f1 dipolar mode is
only visible in the spectrum of vθ. The vθ spectrum also shows
a peak at 2.45 kHz, which does not correspond to any of the
known low frequency modes. It is possible that its origin might
be due to some form of non-linear coupling, or perhaps an ef-
fect of the free atmosphere. However, as already noted in the
1D radial case, the presence of a freely evolving atmosphere
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Fig. 5. Evolution of a stable BU8 solution. The upper panel shows a
comparison between the initial values (solid lines) of equatorial (green)
and axial (blue) densities, and equatorial rotational velocity v (magenta),
against the value of the same quantities at tmax = 1500 (dashed lines).
The densities are normalized to the central initial value ρc, the veloc-
ity to its maximum initial value (0.3499). The insert shows the relative
difference between the equatorial densities as a function of radius. The
spike at r ≈ 10 is due to diffusion at the NS surface, also partly visi-
ble in the velocity profile. The middle panel shows the variation in time
of the central density. The bottom panel shows the Fourier transform
of the the density (green solid line), vr (red dotted line), vφ (magenta
dashed line), and vθ (blue dot-dashed line), at the point r = 3.0, θ = 45◦
of model BU8. The vertical markers indicate the frequency of known
eigenmodes. The frequency resolution of our time series is ∼150 Hz.

does not seem to affect the frequency of the modes, at least
within the accuracy of our temporal series. It is interesting to
recall that inertial modes can also be excited with a continuum
spectrum extending in a frequency range between 0 and 2Ω
(Font et al. 2002). The peak at 500 Hz, corresponds in fact to
the rotation frequency of the star.

We repeated the same analysis for the model BU8, with the
same simulation setup. This represents a rapidly rotating case,
close to the mass shedding limit, and it is a more demanding test
than the mildly rotating case, BU2. Results are shown in Fig. 5.
Many of the same considerations as for the previous BU2 case
still apply and are not repeated. Typical deviations in the value of
the density are larger (about a factor 2) than in the previous case.
There is also evidence for a secular drift (increase) of the central
density, whose average value at the end of the run is a factor 10−3

higher than at the beginning. Again this drift seems to be twice
what is observed in the BU2 case, suggesting a drop in accuracy

at higher rotation rates. We also show a Fourier transform of var-
ious fluid quantities in time. These are all monitored at the same
selected location: r = 3.0 and θ = π/4. It is clear that in this
case the first l = 0 mode F is by far the most strongly excited.
However, power in the first l = 0 overtone H1, at the quadrupole
l = 4 mode 4 p1, and l = 2 overtone 2 p1, is also present. Little
power seems to be present at the l = 2 2 f1 mode. The time evo-
lution of the vθ component is quite noisy: there is no evidence of
power at the H mode frequency, the peak at 1.7 kHz might be a
poorly resolved 2 f1 mode, or a contaminated inertial mode close
to 2Ω frequency. The power that is visible around 700–800 Hz is
likely due to inertial modes, and, analogously to the BU2 case,
its frequency corresponds to the rotation frequency of the star.

5.5. Stability of differentially rotating magnetized equilibria

We present here the evolution of an equilibrium configura-
tion, which is both differentially rotating and contains a strong
toroidal magnetic field. The conditions for such equilibrium and
how to build it have been described in Sect. 4. There are no sim-
ilar tests presented in the literature, and, as a consequence, no
reference against which to compare our results. However, this
setup allows us to investigate a strongly magnetized case, where
we expect the magnetic field to have significant dynamical ef-
fects. Tests in the literature have, at most, focused on the case of
weak poloidal fields (Cerdá-Durán et al. 2008), for the reasons
discussed in Sect. 4. However, we are interested here in eval-
uating a case with a magnetic field that is not simply a small
perturbation, but that has enough energy to modify the under-
lying equilibrium. Given that the algorithm described in Sect. 4
consider only toroidal fields, we limit our analysis to such a case,
and we hope that the proposed test can become a standard, once
our XNS solver is available for open use.

The equilibrium model has the same central density as the
non-magnetized cases ρc = 1.280 × 10−3, and the usual poly-
tropic law K = 100, n = 1. We adopt a differential rotation pro-
file with Ωc = 0.02575, A2 = 70, and a magnetic field charac-
terized by a magnetic polytropic index m = 1 and coefficient
Km = 3, corresponding to a maximum magnetic field inside the
star of �5× 1017 G, and to a ratio of magnetic energy to total in-
ternal energy �0.1. We name this new model BM. With respect
to an equilibrium with a very similar rotational structure but no
magnetic field (model B2: Stergioulas et al. 2004; Dimmelmeier
et al. 2006), the star is a factor ∼1.5 larger in equatorial radius.
The domain, r = [0, 16] and θ = [0, π], is covered with 200 zones
in the radial direction and 100 zones in angle. The star is re-
solved on average over about 120 radial zones. The evolution is
followed until a final time tmax = 1500 corresponding in physical
units to �7.5 ms.

Figure 6 compares the equatorial and axial profiles of the
density, together with the rotational velocity v = (vφvφ)1/2, and
the magnetic field B = (BφBφ)1/2, at time t = 0 and t = tmax.
There is evidence of a secular drift (increase) of the central
density, whose average value at the end of the run is a factor
1.5× 10−3 higher than at the beginning, together with typical os-
cillation of similar amplitude. Larger deviations on the order of
10−2 characterize the outer layer of the star for r > 10, where the
ratio of magnetic pressure to gas pressure is higher. This is also
visible in the broader shear layer that form at the boundary with
the atmosphere, compared to non-magnetized cases (Figs. 4, 5).
There is also some evidence of a drop in the rotation rate of the
core. The reason is not clear. It could either stem from some an-
gular momentum redistribution from the core to the outer layer
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Fig. 6. Evolution of a stable magnetized solution. The upper panel
shows a comparison between the initial profiles (solid lines) of the equa-
torial (green) and axial (blue) densities, the equatorial rotational veloc-
ity v (magenta) and toroidal magnetic field B (red), and the value of the
same quantities at at t = 1500 (dashed lines). Densities are normalized
to the initial central value, velocity to its maximum (0.09810) initial
value, and magnetic field to its maximum initial value too. The insert
shows the relative difference between the equatorial densities as a func-
tion of radius. The spike at r ≈ 12 is due to diffusive relaxation at the
boundary between the high density star and low density atmosphere.
The lower panel shown the variation in time of the central density, at
θ = π/2.

of the star or to some convection taking place in the core, possi-
bly excited by initial relaxation. It is likely that, due to round-off
errors and to the initial relaxation, some free energy might be
injected into the star to power convective motions in regions of
marginal convective stability as the core. We have, however, ver-
ified that the typical poloidal velocities in the core are ∼10−4,
which implies that it will be necessary to follow the system for a
much longer time in order to see whether these convective mo-
tions are stabilized. This also agrees with the results presented by
Kiuchi et al. (2008), which suggest, even for the case of strong
instabilities, typical convective timescales of a few thousand M.

A detailed analysis of the stability of strongly magnetized
configurations is beyond the scope of this paper. This test, how-
ever, demonstrates that stable configurations are preserved for
many sound-crossing times, in cases involving strong magnetic
fields, too. We have not carried out a full mode investigation,
as in the previous cases, because there are no known values to
compare our results to. There is also no reference solution, as in
the case of RNS for non-magnetized rigid rotators. However, al-
ready from the plot of the central density, it is possible to see an
oscillatory behavior, with a typical frequency 900 Hz. The am-
plitude of the oscillations, 10−3, is about one order of magnitude
smaller than the result of Kiuchi et al. (2008). This frequency can
be compared with the fundamental mode of a non-magnetized
configuration, with a similar velocity profile (Ωc = 0.02575, and
A2 = 70), which is located at 1.37 kHz (Dimmelmeier et al.
2006). There are also some hints that the first l = 0 overtone
might have a similarly smaller frequency, even if there is little
power in it and its identification in the spectrum is not certain.

A lower frequency for l = 0 modes can easily be understood,
if one recall that it is well known (e.g. Bucciantini et al. 2003)
that toroidal magnetic fields behave as gas with adiabatic index
4/3, for l = 0 perturbations. Compared with the gas, which has
adiabatic index 2, the presence of strong toroidal magnetic field
leads to a softening of the generalized EoS of the perturbations,
corresponding to a lower sound speed and longer vibrational pe-
riods. The larger radial extent of the star also contributes, given
that the period or radial compressive modes scales as the sound
crossing time.

5.6. Radial and axisymmetric collapse to a black hole

The migration test performed in Sect. 5.2 already shows the
ability of the XCFC algorithm to handle the dynamical evolu-
tion of very compact configurations. Although that test is failed
by the original CFC (Dimmelmeier et al. 2002), Marek et al.
(2006) have shown that it can still be succesfully simulated by
using a modified version. The superiority of XCFC formulation
fully manifests itself in cases where the evolution leads to the
formation of black holes and appparent horizons (AHs) (York
1989; Baumgarte & Shapiro 2003; Thornburg 2007). To prop-
erly evaluate the strength of our XCFC solver, we present the
results of two simulations of the collapse of unstable neutron
stars to black holes in this section: a 1D collapse of a spheri-
cally symmetric NS and a 2D collapse of a rapidly rotating one
(Bernuzzi & Hilditch 2010; Cordero-Carrión et al. 2009; Baiotti
et al. 2005). In the 1D case, the AH is found using a zero-finding
algorithm, while for the 2D collapse we use a simple minimiza-
tion algorithm, with the AH parametrized as a surface in terms
of spherical harmonics (for details on the algorithms see Sect. 8
of Thornburg 2007; Sect. 6.7 of Alcubierre 2008; and Shibata
1997).

For the 1D case we consider the same unstable configura-
tion of the migration test, Sect. 5.2, and following Bernuzzi &
Hilditch (2010) we add a perturbation of the form

δvr =

{ −0.005 sin (r/rNS) if r ≤ rNS
0 if r > rNS

(94)

where rNS is the initial radius of the neutron star. The compu-
tational domain r = [0, 10] is covered by 300 equally spaced
radial zones. A hot low-density atmosphere is set outside the NS
and allowed to evolve freely. An ideal gas EoS is used, but given
that the evolution of the collapse does not lead to shocks and
dissipative heating, results are equivalent to the case of a poly-
tropic EoS. Despite our resolution being 300 times worse than
the central resolution used by Cordero-Carrión et al. (2009), we
are able to follow the evolution of the system past the formation
of an apparent horizon.

In Fig. 7 we show the evolution of a few quantities. The
apparent horizon forms at a time tAH � 47 to be compared to
tAH � 48 in Bernuzzi & Hilditch (2010). When the AH forms, its
location is r = 0.61, the rest mass outside it is 0.28 of the initial
rest mass, and the value of the lapse at the center is αc = 0.028.
Our results agree with what is shown in Fig. 3 of Cordero-
Carrión et al. (2009) and Fig. 8 of Bernuzzi & Hilditch (2010). In
Fig. 7 we also show the value of the central density. However, a
cautionary remark is in order here about this quantity. As the col-
lapse proceeds, the metric becomes progressively more curved in
the origin and the density correspondingly steeper, to the point
where interpolation and round-off errors become more and more
relevant. In Cordero-Carrión et al. (2009), despite their much
higher resolution, already at t ∼ tAH − 10 noise is present in the
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Fig. 7. Collapse to BH. Upper panel: the monotonically rising red
curves represent the evolution of the central density with respect to the
intial value ρc/ρc(t = 0) (as explained in the text the curves are trun-
cated at the formation of the apparent horizon), while the monotonically
decreasing blue curves represent the value of the lapse α at the origin.
Solid lines indicate the spherically symmetric collapse and dashed lines
the collapse of the rotating NS model D4. Bottom panel: the rising red
curves represent the radius of the apparent horizon, while the decreasing
blue curves are the ratio of the rest mass outside the apparent horizon
with respect to the total rest mass. Again, solid lines indicate the spher-
ically symmetric collapse and dashed lines the collapse of the rotating
NS model D4. The vertical dotted line indicates the time tAH when the
apperent horizon forms.

plot of the central density, which is no longer monotonically in-
creasing. In our case we find that, as the system approaches the
formation of the AH, the confidence and accuracy with which
we can derive the central density at r = 0, by extrapolating the
values on the numerical grid, rapidly decreases. At the time the
AH forms we have evaluated that the extrapolation accuracy is
such that the possible error on the density is ∼10%, and it in-
creases rapidly afterward. For this reason, we truncate the central
density plot at the formation of the AH. It should be reminded
that the standard practice to handle systems after the formation
of an AH is to excise the region inside the AH itself, excluding it
from the computational domain (Baiotti et al. 2005; Hawke et al.
2005). The precise value of the cental density is obviously not an
important quantity, as far as the global evolution of the system is
concerned. Indeed, quantities that depend on global properties of
the system like the AH radius, rAH, the rest mass left outside it,
the value of the lapse at the center (which depends on the global
distribution of matter in the domain), all agree very well with
what has been previously found in the literature.

Fig. 8. Evolution of the collapse of the rotating unstable equilibrium
model D4 (density in Log10 units): upper panel, density at t = tAH − 6;
middle panel density at t = tAH; lower panel, density at t = tAH + 6. The
dashed countour in the middle and lower panel indicates the position of
the apparent horizon.

For the 2D case we consider the model D4 of Baiotti et al.
(2005) and Cordero-Carrión et al. (2009). This corresponds to
a uniformly rotating neutron star with a central density ρc =
3.116 × 10−3, a rotation rate Ω = 0.0395, a gravitational mass
M = 1.86, an equatorial radius re = 7.6, and an ellipticity
rp/re = 0.65. Following Cordero-Carrión et al. (2009), the col-
lapse is triggered by reducing the pressure 2% with respect to
the equilibrium value. The computational domain r = [0, 10],
θ = [0, π] is covered by 200 equally spaced radial zones and 100
equally spaced angular zones. As usual, a hot low-density atmo-
sphere is set outside the NS, and allowed to evolve freely and
an ideal gas EoS is used. Again, despite our radial resolution be-
ing 50 times worse than the central resolution used by Cordero-
Carrión et al. (2009), we are able to follow the evolution of the
system past the formation of an AH.

In Fig. 7 we show the evolution of a few quantities. The
AH forms at a time tAH � 126, to be compared to tAH � 130
in Cordero-Carrión et al. (2009), its location at that moment is
r = 0.75, the rest mass outside is 23% of the initial rest mass,
and the value of the lapse at the center is αc = 0.025. Our re-
sults agree with what is shown in Fig. 3 of Cordero-Carrión
et al. (2009). The same considerations stated above for the cen-
tral density still apply. Interestingly, we are able to follow the
evolution of the model D4 for a much longer time after the for-
mation of the AH with respect to Cordero-Carrión et al. (2009).
Figure 8 shows the evolution of the NS as the AH forms and
grows. The middle panel represents the system at the moment of
the formation of the AH, as in their Fig. 4 (warning: km units
were used on the axes). The lower panel shows the density at
t = tAH + 6. Clearly a disk has formed as in Baiotti et al. (2005):
the NS has been completely accreted inside the AH in the polar
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Fig. 9. Evolution of the toy collapse model. Panels show the rest mass density and the mangetic field lines (represented by arrows) at three different
instants of the evolution. Left panel: t = 50, initial aspherical collapse. Note that the star is collapsing along the axis but expanding at the equator.
Middle panel: t = 100, bounce. Right panel: t = 200, later expansion.

region up to a latitude of around 30◦, while matter is still present
in the equatorial region up to r ∼ 3.

5.7. Toy collapse

Core-collapse simulations are often presented as a test of code
performances. However, they often aim at simulating realistic
systems and involve complex physics: to the complexity of ex-
act MHD solutions in a dynamical metric (Bocquet et al. 1995),
they usually add sophisticated initial conditions from stellar evo-
lution, tabulated EoS, and neutrino transport. While all these el-
ements are undoubtedly important in the study of the physics of
core collapse, there might be questions whether they are truly
necessary to evaluate the performances of the metric solver.
Moreover, the diversity in setup, EoS, and transport algorithms
makes a direct comparison among different codes quite diffi-
cult. Such simulations are also hard to reproduce, if, for exam-
ple, initial conditions or tabulated EoS are not easily and freely
available, or require specific code implementations. Moreover,
results themselves often show the growth of turbulence (convec-
tion) and MRI (Cerdá-Durán et al. 2008), for which comparison
should be done in phase space and not on selected snapshots at
arbitrary times. In an attempt to construct a simple run with fully
defined initial conditions, a simple EoS, and no complex physics,
we have designed a novel test run of what we call a toy collapse.
However, this incorporates some of the important elements of a
fully 2D non-linear evolution typical of a more realistic collapse
scenario, and it also includes a poloidal magnetic field.

The chosen initial conditions are the following

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ = 10−4

p = max
[
π/3

(
102 − r2

)
ρ2, 10−9

]
if r ≤ 10

vφ = α−1
(
0.025 + βφ

) (95)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ = 10−7

p = 10−9 if r > 10
vφ = 0.0

(96)

corresponding to a rigidly rotating uniform sphere. The kinetic
pressure is halfof the hydrostatic value for the same matter

distribution, in Newtonian gravity and with no rotation. To this
configuration a poloidal magnetic field is added using a genera-
tor potential

Aφ = max

[
3 −

√[
8(r − 6)2 + 36(θ − π/2)2

]
, 0.

]
, (97)

yielding the components

Br := γ1/2Br = ∂θAφ, (98)

Bθ := γ1/2Bθ = ∂rAφ, (99)

where we recall that γ1/2 = ψ6r2 sin θ.
The initial conditions are found by solving the XCFC equa-

tions, together with the above conditions for the fluid and mag-
netic variables. This provides us with a self-consistent set of con-
served variables and metric coefficients, corresponding to our
choice of primitive variables. Our definition of velocity implic-
itly involves the metric. The evolution of this configuration in-
corporates various elements of strongly dynamical and aspher-
ical collapse. The original uniform sphere collapses primarily
along the polar axis, where there is no centrifugal support, while
it tends to expand at the equator, where rotation is stronger,
forming a strongly oblate disk. Due to the stiff EoS, the sys-
tem bounces when the central density has increased of about
50%, then the structure re-inflates, driving a shock into the lower
density of the surrounding atmosphere. During the collapse the
poloidal field is stretched, compressed, and twisted by rotation,
but remains confined inside the star. In Fig. 9 we show three
snapshots of the evolution, which we describe as follows: the
quasi-spherical initial collapse, the bounce, and the final struc-
ture. The numerical domain, r = [0, 35] and θ = [0, π], is made
up of 500 zones in the radial direction and by 150 zones in angle.
The initial high-density sphere is resolved over about 150 radial
zones. The evolution is followed for a time tmax = 200 corre-
sponding in physical units to �1 ms. At t = 100 the star has
turned into a disk with aspect ratio ∼1/10. At t = 200, in the
later expansion, the density is about 15% of the initial value. A
density bump is formed distorting the magnetic field.
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6. Conclusions

In this paper we have upgraded the Eulerian conservative high-
order code for GRMHD (ECHO: Del Zanna et al. 2007) to dy-
namical spacetimes. We chose a fully constrained method and
conformal flatness for the Einstein equations, and in particular
we have built a numerical solver based on the extended con-
formally flat condition scheme (XCFC: Cordero-Carrión et al.
2009) for the elliptic equations providing the metric terms. This
is known to improve on the previous CFC formulation (e.g.
Wilson & Mathews 2003), because of the hierarchical nature
of the equations to solve (the elliptic equations are fully decou-
pled), and because local uniqueness of the solution is ensured
even for highly dynamical non-linear cases. Our novel scheme is
here named X-ECHO, and we also presented a code for produc-
ing self-consistent initial data (metric terms and GRMHD quan-
tities) for polytropic, differentially rotating, relativistic (neutron)
stars with a toroidal magnetic field named XNS. This code
is publicly available at http://sites.google.com/site/
niccolobucciantini/xns, and we hope it will provide a use-
ful benchmark and initial data for the evolution of NSs or for
core collapse in the magnetized case.

Both X-ECHO and XNS work in spherical coordinates of
the conformally flat metric, and axisymmetry is assumed. The
2D metric solver for the elliptic equations (Poisson-like scalar
PDEs and vector Poisson PDEs) use a mixed technique: spec-
tral decomposition in spherical harmonics (or vector spherical
harmonics) in the angular direction and finite-differences lead-
ing to the inversion of band-diagonal matrices in the radial di-
rection. This is achieved on the same numerical grid as is used
for evolving the fluid/MHD quantities, thus avoiding the need
for interpolation over different meshes. We fully test the codes
against known problems involving fluid configurations in dy-
namical spacetimes, basically 1D and 2D evolution and vibra-
tion modes for NS configurations, migration to stable branches,
1D and 2D collapse of an unstable NS towards a BH, including
the formation of an apparent horizon, and we propose a cou-
ple of novel GRMHD test problems, the evolution of a differ-
entially rotating magnetized NS and a toy collapse simulation
in the presence of poloidal magnetic fields. The metric solver is
fast, and in the cases we have tested, the CPU time required to
solve the XCFC system is comparable to the time taken to up-
date the MHD fluid quantities, despite the use of a fast Riemann
solver (HLL/HLLC). For higher than second-order reconstruc-
tion techniques, the computational time is always dominated
by the HD/MHD module. The code was validated against pre-
vious results obtained with both free-evolution and fully cos-
trained schemes and with the linear theory for perturbations.
Performances in the presence of strong magnetic fields, violently
dynamical configurations, large deviation from sphericity, and
even apparent horizons, show that the method and its implemen-
tation with the HD/MHD module are stable in the situations of
interest. Moreover we have shown that, in the case of NSs sur-
rounded by a low-density atmosphere, there is no need to apply
any reset procedure to the atmosphere itself, which can be al-
lowed to evolve freely, without altering the stability or the results
of the simulations.

For the immediate future we plan to investigate the stability
and to find the characteristic vibrational modes of a set of mag-
netized NS configurations, with and without differential rotation,
for both stable and unstable magnetic profiles. We also plan to
investigate the growth of magnetic field due to MRI in differen-
tially rotating NS, which might be of some interest to explain
the late flaring activity that is observed in long duration GRBs,

and that, within the millisecond-magnetar model, is commonly
attributed to bursty magnetic activity in the cooled and convec-
tively stable NS. However, the final goal is to include a more
realistic treatment of the microphysics, going beyond the simple
ideal gas law implemented here for reproducibility of the nu-
merical tests, especially as far as neutrino heating is concerned,
and possibly to couple our code with a transport algorithm for
neutrinos as required for collapse calculations. This will allow
us to study the magnetized core-collapse scenario in details, and
to investigate the role of a strong magnetic field in shaping and
regulating the collapse. In particular, we also plan to derive a
more realistic setup from magnetized collapse simulations for
the (long) GRB model recently proposed by Bucciantini et al.
(2009), where a newly born millisecond proto-magnetar drives
a GRMHD wind, that, due to confinement of the external stel-
lar envelopes, collimates relativistic jets escaping the progenitor
along the poles.
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