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Abstract. The time dependent reactions of an isothermal spher-

ically symmetric stellar atmosphere to perturbations of the ex-

ternal (interstellar) pressure are analysed by means of computer

simulations. The system is seen to evolve, through the phases

of wind, breeze, accretion and back, according to an hysteresis

type cycle with two catastrophe points: the value of the external

pressure relative to a static atmosphere and that correspond-

ing to the fastest (critical) breeze. This behaviour is proved to

be due to the instability of the outflow breeze solutions (due

to their unfavourable stratification), while subsonic accretion is

stable. A crucial factor of this instability is the position of the

outer boundary: if this is placed too close to the base of the at-

mosphere the inflow/outflow breeze stability is reversed. These

simulations confirm a scenario first proposed by Velli (1994).

Key words: hydrodynamics – instabilities – (Sun:) solar wind –

sun: atmosphere – stars: atmospheres – ISM: jets and outflows

1. Introduction: steady state solutions and breeze instability

Four decades ago Parker predicted the existence of the solar

wind, that is the supersonic outflow of plasma continuously

emanating from the Sun (Parker 1958). The reason for this out-

flow is the impossibility for the interstellar pressure, due to its

extremely low value, to confine a static atmosphere with a radial

temperature profile decaying less rapidly than 1/r. A numerical

simulation attempting to follow equilibrium flows set up by a

given pressure difference between the coronal base and the in-

terstellar medium, as this difference is varied, was presented by

Korevaar (1989). He was able to obtain shocked wind solutions,

both outflow and accretion breezes and shocked accretion flows.
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Recently, however, Velli (1994) has shown that the tran-

sitions from one type of flow to another are more subtle and

involve the presence of catastrophe points and instabilities of

subsonic flows. In the remainder of this section a brief summary

of the possible stationary flows is presented and their stability

is discussed. In the next section some time dependent numeri-

cal simulations will be shown and the results confirm the Velli

(1994) cyclic behaviour of the wind-accretion flows.

Consider, for simplicity, an isothermal spherically symmet-

ric stellar atmosphere (or corona). By combining the momentum

and continuity equations, the stationary solutions are derived

from the Parker wind equation
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where r is nondimensionalised against the stellar radius R? (the

prime indicates a radial derivative), M = v/c is the Mach num-

ber (c is the isothermal sound speed, for which p = c2ρ) and

g = GM?/c
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where M0 is the base Mach number. Breeze solutions have the

asymptotic behaviour |M | ∼ 1/r2, thus the range of the outer

pressure for both subsonic outflows (0 < M < 1) and inflows

(−1 < M < 0) is

ps
∞

< p∞ < pc
∞

≡ ps
∞

exp(
M c

0
2

2
), (3)

where ps
∞

= e−g is the asymptotic static pressure and pc
∞

is the

critical pressure, corresponding to the fastest possible breeze,

that reaching the sonic point M = 1 at rs = g/2. Note that

this range is usually very narrow, since for realistic values of g
(≈ 10 in the solar case) M c

0 � 1.

L
E

T
T

E
R

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301559199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


L14 L. Del Zanna et al.: Dynamical response of a stellar atmosphere to pressure perturbations

In addition to the breeze solutions, a supersonic shocked

wind is allowed for every value of the asymptotic pressure p∞.

For p∞ > pc
∞

the only possible steady solution is a supersonic

accretion inflow. To summarise, the situation is the following:

1. p∞ < ps
∞

. Only a supersonic outflow with a shock beyond

rc is allowed. The position of the shock rs moves outwards

if p∞ is decreased.

2. p∞ = ps
∞

. The static solution with M (r) = 0 everywhere

and a supersonic shocked solution are both allowed.

3. ps
∞

< p∞ < pc
∞

. Three different classes of solutions are

possible: an outflow breeze, an accretion breeze and again

a supersonic shocked wind.

4. p∞ = pc
∞

. The shock position coincides with the critical

radius rc = g/2 and the shocked solutions, both outflow

and inflow, collapse to the corresponding critical breezes.

5. p∞ > pc
∞

. Only the accretion shocked solution is found,

with rs moving from rc towards the coronal base as p∞
increases.

Despite the fact that both subsonic and supersonic outflows

are allowed in the range Eq. (3), the breeze solution is unsta-

ble. Through a linear analysis, Velli (1994) showed that outflow

breezes are unstable to sound waves which leave the pressure at

the boundary unperturbed (standing waves). This is due to the

unfavourable stratification produced by breeze solutions, result-

ing in p∞ > ps
∞

: given a static atmosphere, an increase in p∞
is clearly expected to produce an inflow, not an outflow. For the

same reason, inflow breeze solutions are stable.

Another crucial factor of the stability analysis is the position

of the outer boundary rb, since outflow breezes are not locally

unstable everywhere. This may be understood by noticing that

Eq. (2) implies:

p(r) = ps(r) exp

[

M 2
0 −M 2(r)

2

]

. (4)

Near the coronal base, where M > M0, the pressure of a breeze

solution is lower than the corresponding static pressure, thus the

gradient of the stratification is favourable in that range. This is

true out to a radius rf where the final pressure for the breeze

and static solutions coincide, that is where the Mach number

drops back to its base value. By eliminating p in Eq. (2) through

the continuity equation, an implicit relation for rf is found:

2 log rf + g/rf − g = 0. (5)

This is a very important point, especially for numerical simula-

tions of stellar winds, which necessarily require a limited radial

range as numerical box. For realistic values of g, rf may be very

large and if the external boundary is placed at rb < rf outflow

breezes will be stable, while inflow breezes will be unstable.

2. Time dependent simulations

The only way to follow the nonlinear time dependent evolution

of stellar winds and related flows, even in the simple isothermal

case, is by means of computer simulations. The code used here

Fig. 1. Instability of a breeze solution. The outer pressure is lowered

from the initial value p = 0.02782 to p = 0.02755, corresponding

to ε = −0.01. Both the initial and the final pressure are in the range

allowing for steady subsonic solution, since for g = 4 and rb = 10 the

static and critical pressures at r = rb are, respectively, ps = 0.02732

and p
c = 0.02897.

employs a high order shock capturing scheme, that is the WENO

(Weighted Essentially Non Oscillatory) method proposed by

Jiang & Shu (1996) with Lax-Friedrichs flux splitting, which

provides an accuracy of (∆x)5 in smooth regions (the resolu-

tion used here in all runs is 100 radial points). For the time

integration, a third order TVD Runge-Kutta time stepping, de-

veloped by Shu & Osher (1988), is employed. These combined

methods are known to be convergent under appropriate CFL

numbers.

The numerical box starts at r = 1 (the coronal base, where

the pressure is kept constant to its initial value p = 1) and ends

at r = rb. At this outer boundary the pressure is perturbed in

time, at each run, according to the function

r = rb : p(t) = p(0) + ε psf (t/τ ); f (x) = x2/(1 + x2), (6)

so that for t � τ the external pressure has increased by a factor

ε, in units of the corresponding static value ps = exp[−g(1 −
1/rb)].

As a preliminary example, consider the effect of a small

perturbation of a steady state subsonic outflow. According to

the discussion of the previous section, for rb > rf , the breeze

is unstable and must evolve towards either a shocked wind or

to a subsonic accretion breeze, depending on the nature of the

perturbation. Here the outer pressure is decreased slightly, so

that a close breeze solution is mathematically accessible, and

the results are shown in Fig. 1.

Here the time evolution of the velocity radial profile is shown

as a shaded surface plot, with the time increasing towards the

left along the y-axis. Here the value g = 4.0 is assumed, which

leads to a critical radius located at rc = g/2 = 2.0 and to a value

for the critical outer radius rf ≈ 5.39. In order to demonstrate

the instability of outflow breezes, the value of rb is taken to

be rb = 10 > rf . The outer pressure is decreased by using

Eq. (6) with ε = −0.01 and τ = 1. A variation as small as 1% in

the outer pressure is enough to destabilise the breeze solution,
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Fig. 2a–d. The hysteresis type cycle for

the time evolution of a stellar atmo-

sphere under the effect of a perturbation

of the pressure at the external bound-

ary. The values of the parameters are

the same as in Fig. 1. a Creation of a

shocked wind: the pressure is decreased

from its static value, p
s = 0.02732,

to a final value p = 0.02459, corre-

sponding to ε = −0.1. b The pressure

is increased to a value inside the critical

range (ε = 0.13 ⇒ p = 0.02815): the

steady final state is again a supersonic

shocked wind. c The pressure is further

increased out to a value larger than p
c
∞

(ε = 0.06 ⇒ p = 0.02978): the flow re-

verses its direction collapsing to an ac-

cretion supersonic inflow. d The outer

pressure is brought back to the value

in the critical range (ε = −0.03), but

this time the final solution is a subsonic

accretion breeze. Note that, in this last

case, the oscillations at the final iteration

are not damped yet.

which steepens into a steady supersonic shocked solution, even

if the final value of the pressure at rb still allows for a breeze

stationary solution. The typical time scale of the instability is,

for this choice of the parameters, of the order of 100R?/c.
In the next series of runs the typical hysteresis type cycle

is presented, demonstrating that the actual state chosen by the

flow depends on its history, and that the transitions from inflow

to outflow and back are necessarily catastrophic in nature. Let

the initial situation be static (situation no. 2 in the scheme of the

previous section). First, a supersonic shocked wind is created

by lowering the external pressure (situation no. 1), and then the

position of the shock is moved inwards by increasing the value

of p∞ in such a way that its final value is in the range between

the static and critical values (situation no. 3). The correspond-

ing time evolution may be followed in Figs. 2a–da and 2a–db,

respectively. Note that, although subsonic outflows are present

at certain stages, the final stationary solution is again a shocked

wind. In the third run the outer pressure is increased even further,

beyond the critical value, so that the only possible solution is a

supersonic accretion inflow (situation no. 5). The catastrophic

nature of the hysteresis cycle is especially apparent here, since

a shocked outflow collapses directly to a shocked inflow, with-

out passing through steady subsonic solutions (see Fig. 2a–dc).

Finally, in Fig. 2a–dd, the evolution to an accretion breeze type

solution is shown. This has been obtained by lowering the ex-

ternal pressure back to the value already reached at the end of

the second run.

The situation is summarised in Fig. 3, where the four station-

ary final states of the cycle are shown all together. Note that, if

the pressure was further decreased below the static value, the

accretion breeze would collapse back to a supersonic shocked

wind solution (second catastrophe point).

Finally, it is interesting to verify that when the outer bound-

ary is placed too close to the coronal base, that is when rb < rf ,

breeze outflows are actually stable steady state solutions. For

example, consider an initial static atmosphere and allow the

pressure at r = rb to decrease of a factor ε = −0.05. This time,

as it is shown in Fig. 4, the system slowly evolves towards a

steady state breeze solution.

3. Discussion

We have shown via computer simulations how flows in stellar

atmospheres are established by the pressure difference between

the atmospheric base and the interstellar medium. Our simula-

tions confirm in detail the scenario proposed by Velli (1994) in

which the transition from outflows to inflows and vice versa is

necessarily of a catastrophic nature, in the mathematical sense

that a small variation in a control parameter, i.e. the pressure

difference from atmospheric base to infinity, may cause a finite

amplitude transition to a completely different flow configura-

tion. As a consequence, there exists a range of values of the

control parameters for which the equilibrium flow which is es-

tablished depends not only on the value of the parameter but also

on the previous history of the flow. In other words, for a cyclical

behaviour of the control parameter, the flows that occur in the

atmosphere follow a hysteresis cycle and the symmetry with

respect to the sign of radial velocity, present in the equilibrium

stationary state flow equations, is broken.

For simplicity our numerical calculations have been carried

out considering isothermal flows: subsonic flows are in this case
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Fig. 3. Steady state solutions resulting from the four runs of the cycle

shown in Fig. 2a–d. The solid line refers to the initial, static case. The

dashed, dotted, dot-dashed and double dot-dashed lines refer to runs a,

b, c and d, respectively.

Fig. 4. Stability of a breeze solution, for rb = 4 < rf . The outer pres-

sure of a static atmosphere is lowered from its initial value p = 0.04979

to p = 0.04829, corresponding to ε = −0.03. The system slowly

evolves towards a steady state breeze solution.

limited to an exponentially small range of values of the interstel-

lar pressure, and only subsonic accretion flows are stable (in the

absence of external influences, such as a companion, close to

the star). Supersonic shocked flows, both of accretion and wind

type, are stable. The physical reason for the abrupt transition

from one to the other is the discontinuous nature of communi-

cation via sound waves, which is absent when the flows are su-

personic, and is open when the flow is subsonic. In other words,

as long as there is a supersonic shocked outflow, the lower part

of the atmosphere is protected from knowing the state of the

medium downwind of the shock; once the shock is pushed to

the critical point, commmunication sets in, but by that time it is

too late, so to speak: the pressure at the atmospheric base is too

small and a collapse to accretion occurs, as is well seen in the

numerical simulation.

The scenario described above also holds for polytropic

flows, and may be of relevance in the discussion of more re-

alistic treatments of atmospheric heating and corona formation,

as discussed e.g. by Souffrin (1982), Hearn et al. (1983), Kore-

vaar (1989), and references therein. Of particular interest to our

discussion are the simulations by Korevaar (1989), who found

a smooth transition from supersonic shocked winds to breezes

and then a rapid onset of supersonic shocked accretion: his re-

sult may be understood indeed in terms of the dimensions of

the numerical box, since the external boundary conditions were

imposed well below the marginal stability radius.

We defer simulations with a more realistic energy equation,

necessary to capture the additional effects of coronal relaxation

oscillations, to a subsequent paper. To summarise, we might

say that this paper completes, by describing in detail the out-

flow/inflow transition and its relation with the parameters of the

stellar atmosphere and interstellar medium, the study of spheri-

cally symmetric isothermal flows initiated by Bondi (1952) and

McCrea (1954) for accretion and by Parker (1958) for the solar

wind.
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