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ABSTRACT
The exponential amplification of initial seed magnetic fields in relativistic plasmas is a very
important topic in astrophysics, from the conditions in the early Universe to the interior of
neutron stars. While dynamo action in a turbulent plasma is often invoked, in the last years
a novel mechanism of quantum origin has gained increasingly more attention, namely the
chiral magnetic effect (CME). This has been recognized in semi-metals, and it is most likely
at work in the quark–gluon plasma formed in heavy-ion collision experiments, where the
highest magnetic fields in nature, up to B ∼ 1018 G, are produced. This effect is expected to
survive even at large hydrodynamical/magnetohydrodynamic (MHD) scales, and it is based
on the chiral anomaly due to an imbalance between left- and right-handed relativistic fermions
in the constituent plasma. Such imbalance leads to an electric current parallel to an external
magnetic field, which is precisely the same mechanism of an α-dynamo action in classical
MHD. Here, we extend the close parallelism between the chiral and the dynamo effects to
relativistic plasmas, and we propose a unified, fully covariant formulation of the generalized
Ohm’s law. Moreover, we derive for the first time the 3 + 1 general relativistic MHD equations
for a chiral plasma both in flat and curved space–times, in view of numerical investigation of
the CME in compact objects, especially magnetars, or of the interplay among the non-ideal
magnetic effects of dynamo, the CME and reconnection.

Key words: dynamo – magnetic fields – MHD – relativistic processes – stars: magnetars –
early Universe.

1 IN T RO D U C T I O N

The baryonic component of the Universe is found almost entirely in
the form of plasma, typically ionized gas for the standard conditions
of the heliosphere or of the interstellar medium. On the largest (hy-
drodynamical) scales, astrophysical plasmas can be safely treated
as an electric conductive fluid, locally neutral, where currents and
magnetic fields play an important role (magnetohydrodynamics or
MHD). This approximation can be either employed in its classi-
cal version (non-relativistic speed and temperature) or in the most
general case appropriate to a relativistic fluid. In the latter case, the
theory is named relativistic MHD or GRMHD when the presence of
strong gravity requires the use of general relativity (e.g. for compact
objects like neutron stars and black holes).

The magnetic fields involved in astrophysical plasmas may be
extremely strong, and they are responsible for many steady and
variable emission processes, such as the coronal activity and the
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solar flares driven by sub-photospheric motions and flux emergence
(Priest & Forbes 2002; Shibata & Magara 2011), the electromag-
netic spin-down emission from pulsars (Pacini 1968; Spitkovsky
2006; Philippov et al. 2015), the magnetar flares (Lyutikov 2006),
and the launch of relativistic outflows and jets either in active galac-
tic nuclei (Blandford & Znajek 1977; Komissarov 2004; Hawley
& Krolik 2006; Mignone et al. 2010; Tchekhovskoy & Bromberg
2016) or in the progenitors of gamma-ray burst (GRB; Aloy et al.
2000; Drenkhahn & Spruit 2002; Barkov & Komissarov 2008; Buc-
ciantini et al. 2009; Komissarov et al. 2009; Rezzolla et al. 2011).

Given that ideal MHD alone fails at explaining the process of
magnetization of a fluid initially with B = 0, one of the most im-
portant problems for astrophysical plasmas is the origin of the con-
stituent magnetic fields, in the various environments outlined above,
and their growth through cosmic time. In stars, such fields are likely
to be originated via the so-called α − � dynamo processes (Moffatt
1978), a mechanism capable to amplify initial tiny seed fields expo-
nentially and giving rise to the observed magnetic variable activity
(e.g. the solar cycle). Similar mechanisms generated and main-
tained by turbulence are also invoked to explain the magnetic fields
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in accretion discs and in the interstellar medium (Brandenburg &
Subramanian 2005). As far as the generation of the primordial mag-
netic field is concerned, this must have been originated during or
right after the big bang, due to inflation or phase transitions (Turner
& Widrow 1988; Sigl, Olinto & Jedamzik 1997; Giovannini 2004;
Kandus, Kunze & Tsagas 2011; Campanelli 2013; Kahniashvili
et al. 2013). These fields should be able to survive cosmological
expansion provided that the observation of lower limits in the inter-
galactic medium (IGM), B > 3 × 10−16 G (Neronov & Vovk 2010)
is indeed an indication of a primordial origin. Alternative explana-
tions for the IGM magnetic fields are aperiodic plasma fluctuations
(Schlickeiser 2012) or battery processes based on photoionization
during the reionization epoch (Durrive & Langer 2015; Durrive
et al. 2017).

A promising mechanism, first proposed precisely for the origin of
primordial magnetic fields, is based on the creation of an equilibrium
current arising in a chiral system of charged fermions where parity
conservation is violated (Vilenkin 1980; Vilenkin & Leahy 1982).
This is an intrinsically quantum phenomenon, and it has been later
rediscovered using different arguments (e.g. Alekseev, Cheianov &
Fröhlich 1998). In the context of the quark–gluon plasma (QGP)
produced by heavy-ion collisions, this phenomenon is known as the
chiral magnetic effect (CME; Fukushima, Kharzeev & Warringa
2008; Kharzeev, McLerran & Warringa 2008; Kharzeev 2014).
This quantum effect arises when there is a chiral imbalance be-
tween right- and left-handed fermions, leading to the creation of an
electric current along an external magnetic field, that is JCME ∝ B.
This field-aligned current is topologically protected even in the
presence of strong interactions, thus it is of non-dissipative nature
and expected to survive at a macroscopic level, and hence to af-
fect hydrodynamic properties like the transport coefficients (Son &
Surówka 2009; Kharzeev & Yee 2011; Huang 2016).

Experimental evidence of the CME has been recently recog-
nized in condensed matter physics in the so-called Weyl semi-metals
(Huang et al. 2015; Xiong et al. 2015; Li et al. 2016). As far as
QGP is concerned, the interplay of quantum anomalies with both
magnetic field and vorticity leads to a variety of phenomena, most
notably the CME itself, which are under investigation at the Rela-
tivistic Heavy Ion Collider (RHIC) and the Large Hadron Collider.
Promising progress has been achieved, but more theoretical and ex-
perimental work is needed to unambiguously identify the CME and
related phenomena (Kharzeev et al. 2016). A macroscopic quantum
effect, which has been clearly identified, is the coupling of particles
spin with the QGP fluid vorticity (rather than the magnetic field),
leading to hyperons global polarization. This was first observed
in relativistic viscous hydrodynamical simulations (Becattini et al.
2015) and recently confirmed in non-central Au-Au collisions at
RHIC (Adamczyk et al. 2017).

In addition, ultrarelativistic collisions of heavy ions are known to
produce the highest magnetic fields ever measured, up to B ∼ 1018 G,
even though these are expected to decay very fast during the fireball
expansion even in the presence of a plasma (Tuchin 2013; McLerran
& Skokov 2014; Pang, Endrődi & Petersen 2016; Pu et al. 2016);
therefore, it is natural to identify the QGP as the best environment
where to look for CME evidences (Tuchin 2015; Li, Sheng & Wang
2016). More realistic calculations based on numerical simulations
of the expansion of an initially strongly magnetized QGP fireball in
the relativistic MHD regime are starting to appear in the literature
(Inghirami et al. 2016; Das et al. 2017; Roy et al. 2017; Inghirami
et al., in preparation).

As far as astrophysical applications are concerned, the impor-
tance of the CME is that the resulting field-aligned current is ex-

pected to act like a dynamo and amplify seed magnetic fields in
several environments. The origin of primordial magnetic fields may
be attributed to the CME, provided a large reservoir of chiral asym-
metry was present and temperature remains high enough, above
T � 10 MeV (Boyarsky, Fröhlich & Ruchayskiy 2012; Tashiro,
Vachaspati & Vilenkin 2012), whereas the formation of a turbulent
spectrum has been recently investigated numerically (Brandenburg
et al. 2017; Dvornikov & Semikoz 2017; Schober et al. 2018). It
is found that after the initial CME instability, leading to magnetic
field growth and driven turbulence, a new mean-field dynamo ef-
fect arises and the field keeps on increasing of several orders of
magnitude, before the final saturation stage to the observed val-
ues of magnetization. Similar effects may act in the interior of a
proto-neutron star (Pons et al. 1999), where due to the highly tur-
bulent and hot (T > 100 MeV) medium the magnetic field may be
easily amplified to values beyond the quantum threshold (BQED ≈
4.4 × 1013 G), either by dynamo processes (Duncan & Thompson
1992) or by the CME itself due to the chiral imbalance produced in
the URCA processes during deleptonization (Dvornikov & Semikoz
2015; Sigl & Leite 2016; Yamamoto 2016a). Once this extremely
strong field has emerged in the star corona, depending on the field
topology the typical manifestations of magnetar activity may arise
(Turolla, Zane & Watts 2015).

In spite of the wealth of potential applications of the CME to rela-
tivistic plasmas, the theoretical picture where this quantum effect is
self-consistently included within the MHD framework, as appropri-
ate to the macroscopic fluid scales, is not well established yet. The
CME current is either included by hand in the Maxwell equations,
retrieving the so-called Chern-Simons-Maxwell set of equations
(Tuchin 2015; Qiu, Cao & Huang 2017), or the approach of sta-
tistical mechanics based on the second law of thermodynamics is
followed (Kharzeev & Yee 2011; Boyarsky, Fröhlich & Ruchayskiy
2015; Giovannini 2016; Yamamoto 2016b). In any case, most of the
theoretical frameworks proposed so far either treat the equations in
a covariant form, but then remain in the reference frame of the fluid,
or evolve the full system for the anomaly coefficient, the hydrody-
namical quantities, and the magnetic field (including the interplay
with turbulence) within non-relativistic MHD (Pavlović, Leite &
Sigl 2017; Rogachevskii et al. 2017).

What is still missing is a chiral MHD theory valid for fully rela-
tivistic plasmas, including the possible presence of relativistic bulk
motions and/or strong gravity, to be treated by solving the Einstein
field equations, for instance, for applications to accretion onto black
holes or for the neutron star interior. A similar approach was pre-
sented in the case of the mean-field dynamo action by Bucciantini &
Del Zanna (2013), where the upgraded version of the ECHO (Eule-
rian Conservative High-Order; Del Zanna et al. 2007; Bucciantini &
Del Zanna 2011) numerical code for non-ideal GRMHD, including
the dynamo effect, was described and tested in different geometries
and space–time metrics.

In this paper, we propose to fill this gap, and we extend the strong
analogy of the CME effect and the dynamo to the fully relativistic
case. We first write the covariant form of Ohm’s law for a dynamo-
chiral plasma, including dissipation, in the comoving frame of the
fluid. Then, we transform this in the reference frame of the so-
called Eulerian observer, together with the evolution equations for
electromagnetic fields and matter, allowing for the 3 + 1 splitting
of the equations as needed for numerical integration. We thus de-
rive for the first time the equations for Dynamo-Chiral General
Relativistic MagnetoHydroDynamics (DC-GRMHD), valid either
in Minkowski flat space or in any curved manifold of general rela-
tivity. Finally, we present a numerical application to the growth of
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magnetic fields due to the CME for a simplified magnetar model,
assuming a conformally flat evolving space–time metric.

2 TH E C H I R A L M AG N E T I C E F F E C T

As discussed in the Introduction (see the references therein for
the relevant literature), the CME in a system composed by high-
temperature chiral fermions is the phenomenon of electric charge
separation, and hence creation of a current, along an external mag-
netic field. In spite of its quantum nature, being related to the im-
balance of right- and left-handed chirality of particles with spin 1/2
(for example in a pair plasma), the current is non-dissipative and the
effect is macroscopic, and it is expected to affect the overall dynam-
ics of the plasma itself. If B is an external magnetic field present
in a plasma with chiral anomaly, the electric current induced by the
resulting charge separation is

JCME = σA B, (1)

where σ A is the axial, or chiral, conductivity coefficient. This ex-
pression looks analogous to the usual one responsible for Ohmic
dissipation, the standard Ohm’s law being JOhm = σ E, with the
crucial difference that here the current is proportional to B rather
than E.

In case both CME and Ohmic dissipation are present in the chiral
plasma, the Maxwell equations (from now on we assume natural
units with 4π → 1, c → 1, � → 1)

∂t B + ∇ × E = 0, ∇ · B = 0,

∂t E − ∇ × B = −J, ∇ · E = ρe, (2)

where ρe is the charge density (a derived quantity in MHD, or even
set to zero assuming local neutrality at the hydrodynamical scales),
are closed by assuming the generalized form of Ohm’s law

J = JOhm + JCME = σ E + σA B. (3)

Note that the relation expressed in the above form is valid for non-
relativistic velocities or in the comoving frame of the fluid. For
constant conductivity coefficients, the evolution equation for the
magnetic field inside a chiral plasma is

∂2
t B + σ ∂t B = σA(∇ × B) + ∇2 B, (4)

and neglecting time-scales shorter than 1/σ , it is easy to see that the
magnetic field may grow in time due to the CME, even exponen-
tially, against Ohmic dissipation.

A peculiar aspect of CME is that equation (1) introduces a parity-
violation otherwise absent in Maxwell’s equations. Hence, this may
happen only in a chiral medium with broken parity symmetry, since
B is a parity-even pseudo-vector while the electric current is a
parity-odd vector. Moreover, since both J and B are odd under
time reversal, the chiral conductivity σ A must be time-even, which
is an unusual behaviour, given that for Ohmic conductivity σ is the
opposite, since E is time-even. This is, however, typical of non-
dissipative currents, for example those present in superconducting
media, so no entropy production is expected by the CME current
(Kharzeev & Yee 2011).

Let us now investigate how the chiral conductivity depends on
other quantities, and how this can be evolved in time and coupled
to the other MHD equations. If nA and JA are the axial charge and
current densities of the unbalanced fermions, their conservation is
known to be broken by the presence of an electric field aligned to
the magnetic field, so that the continuity equation becomes inho-
mogeneous. The resulting (anomalous) evolution equation for the

axial charge is usually written as (e.g. Kharzeev 2014; Rogachevskii
et al. 2017)

∂tnA + ∇ · JA = CA E · B, (5)

where CA = e2/2π2 for charged massless fermions, such as a rela-
tivistically hot pair-plasma. By integrating in space and introducing
the total time derivative, the axial charge produced in unit time in a
volume V, where E · B 	= 0, is

dQA

dt
= CA

∫
V

E · B dx3, QA =
∫

V

nA dx3. (6)

Introduce now the chiral chemical potential μA, conjugated to the
axial charge nA, which is in practice the energy needed to produce
a single anomaly. The chiral conductivity in terms of μA is simply

σA = CAμA, (7)

where the same constant CA appearing in equation (5) appears.
In the case when spatial variations of nA are not strong and for a

linearized equation of state nA = χAμA, where χA is the chiral, or
axial, susceptibility (proportional to the square of the temperature,
χA∝T2), one may write

μA = nA

χA
� QA

χAV
; (8)

hence, the chiral conductivity, and thus the CME current itself, is
actually quadratic in the constant CA. In this simple case, the time
evolution for μA may be written as

dμA

dt
= 1

χAV

dQA

dt
= CA

χAV

∫
V

E · B dx3, (9)

thus the growth of the CME current is clearly enhanced in the
regions where E · B 	= 0 of a non-ideal plasma.

On the other hand, when spatial dependences of the chiral mag-
netic potential are not negligible, an evolution equation may be
derived from equation (5) assuming that the axial current can be
expressed as

JA = −DA∇nA, (10)

where DA is a (constant) diffusion coefficient. Employing χA once
again, the following convection–diffusion equation with a source
proportional to the anomaly term is found (Boyarsky et al. 2015):

∂tμA − DA∇2μA = CA

χA
E · B, (11)

which may be solved to provide the time and space dependency of
σ A, and hence JCME, using equations (7) and (1).

A very interesting property of the CME is the relation of the axial
charge with the magnetic helicity H of the plasma, for which we
have (e.g. Biskamp 1993)

H =
∫

A · B dx3,
dH
dt

= −2
∫

V

E · B dx3, (12)

where A is the usual magnetic vector potential. Note that H looks
gauge dependent, but if B is parallel to the external boundary, or
the latter is far away in a region of vanishing magnetization, then
H becomes gauge invariant. Now, the magnetic helicity is known
to be preserved in an ideal plasma, even in the presence of motions
at all scales, while it is allowed to vary on the (slow) diffusion
time-scales in three-dimensional reconnection events, where the
magnetic field topology changes (Berger & Field 1984; Priest &
Forbes 2000; Blackman 2015). Similarly, here, in a chiral plasma,
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H is not conserved, but we have the balance

d

dt

(
QA + 1

2 CA H
) = 0. (13)

As a consequence, one may also rewrite equation (9) as (Boyarsky
et al. 2012)

dμA

dt
= − CA

2χAV

dH
dt

, (14)

and the CME growth is now related to a decrease of magnetic helic-
ity. The complex interplay between the chiral anomaly and magnetic
helicity at different spatial scales leads to very important conse-
quences on the chiral MHD turbulent (inverse) cascade and mag-
netic field amplification (Tashiro et al. 2012; Hirono, Kharzeev &
Yin 2015; Pavlović et al. 2017; Rogachevskii et al. 2017), as recently
confirmed also on the basis of numerical simulations (Schober et al.
2018).

3 THE TURBU LENT MEAN-FIELD DY NA MO
C L O S U R E F O R MH D

On the large scales of astrophysical sources, quantum anomalies
and the CME, in particular, are usually neglected, though we have
seen in the Introduction that these may be important for the early
phases of cosmic expansion or inside the cores of (proto) neutron
stars. The problem of magnetic field amplification has traditionally
been addressed by invoking turbulence and the so-called mean-field
dynamo effect.

When MHD quantities are decomposed into large-scale mean
values and stochastic fluctuations, as appropriate in a turbulent
medium, the Ohm law written in the comoving frame of the plasma
for resistive (classical) MHD becomes

E′ ≡ E + v × B = −〈δv × δB〉 + η J ; J = ∇ × B, (15)

where a (non-relativistic) bulk flow velocity v is allowed. Here,
η ≡ 1/σ is the standard Ohmic resistivity coefficient (assumed to
be a scalar, neglecting anisotropies for simplicity), and we retain
the usual vector notation for the averaged fields. Now, the key
assumption in turbulent dynamo theory is that the mean of the
quadratic term, which is essentially an electromotive force, can be
written as

〈δv × δB〉 = αdyn B − βdyn(∇ × B), (16)

so that a mean-field closure is reached, where the αdyn and βdyn

terms depend on the turbulent properties (namely turbulent fluid
helicity, energy, and correlation time; Moffatt 1978; Parker 1979;
Krause & Raedler 1980). Thus, in a turbulent plasma, the new form
for Ohm’s law is

E′ = −αdyn B + η J, (17)

where the contribution of the turbulent diffusivity βdyn has been
absorbed in the η coefficient for simplicity.

When combined to the Maxwell equations into the induction
equation for B, the α-term leads to exponentially growing modes
of the magnetic field (with a growth rate γ∝αdyn), the proper dy-
namo effect, whereas the second term leads to diffusion. Indeed, for
constant αdyn and η coefficients, one finds

∂t B = ∇ × (v × B) + αdyn(∇ × B) + η∇2 B, (18)

and for a static plasma with B ∼ exp(ikx + γ t), the growth rate is
exactly γ = αdynk if diffusion is neglected. The exponential growth
of the magnetic field is the main goal of the dynamo effect, but

obviously in any realistic setup the back reaction on the MHD
structure or magnetic diffusion will prevent the unlimited growth
predicted by solving the induction equation alone. If one prefers to
remain in the kinematical approach, the trick is usually to introduce
a quenching effect of the kind

αdyn(B) = α0

1 + (B/Beq)2
, (19)

where Beq is an equipartition field. In addition to the dynamo insta-
bilities, the α term is also responsible for the propagation of dynamo
waves, first predicted for the solar convection zone (Parker 1955).

An alternative form for the Ohm law in equation (17) can be
written in terms of conduction coefficients, and here we chose the
symmetric expression

J = σE E′ + σB B, (20)

where σ E = 1/η and σ B = αdyn/η. The presence of a conduction
current proportional to B itself is the distinctive characteristic of the
α-dynamo action, leading to the exponentially growing modes dis-
cussed above. However, as we have shown in the previous section,
just compare the above expression with equation (3) or equation (4)
when v = 0 with equation (18), it is also typical of the CME, which,
in fact, is known to yield the same type of growing modes, propa-
gating waves, and turbulent cascade (e.g. Rogachevskii et al. 2017).
Notice that contrary to the mean-field dynamo described here, the
chiral mechanism operates even for simple laminar flows or non-
helical turbulence.

Therefore, from now on, we propose a unified treatment of both
the dynamo-chiral effects within the MHD regime, in which σ B can
be due either to the mean-field dynamo of classical MHD as defined
above, or to the CME due to the presence of the chiral anomaly;
hence, σ B = σ A as in equation (1) (or to both contributions, and in
this case σ B is simply obtained by summing the two coefficients). On
the other hand, σ E is always given by the inverse of the resistivity,
either of Ohmic (collisional) type or due to the turbulent mean-field
closure. When all forms of dissipation vanish (σ E → ∞) and the
dynamo-chiral action can be neglected (σ B → 0), we retrieve the
ideal MHD condition for infinite conductivity

E′ = E + v × B = 0. (21)

4 DY NA M O - C H I R A L G R M H D EQUAT I O N S

So far, we have summarized the main properties of the CME and of
mean-field dynamo action as appropriate for non-relativistic plas-
mas, and we have proposed equation (20) as a universal Ohm’s law
valid for both effects, to be incorporated within the MHD system.
As discussed in the Introduction, since the current research on the
CME is mainly focused to the physics of the QGP plasma formed
during heavy-ion collisions, only special relativistic treatments can
be found in the literature. Having in mind applications relevant for
Astrophysics, where the use of the Einstein theory of gravitation
may be important, in the present section, we derive for the first
time the equations for the full system of DC-GRMHD equations,
valid for any curved space–time metric, first in covariant form and
later moving to the 3 + 1 formalism, as needed for applications of
numerical relativity.

4.1 Covariant formulation

The equations for one-fluid GRMHD are the conservation laws
for mass and total (matter and electromagnetic fields) energy-
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momentum

∇μ(ρuμ) = 0, ∇μT μν = 0, (22)

where ρ is the mass density and uμ is the fluid velocity (here, we
have assumed the so-called Eckart reference frame), and Maxwell’s
equations

∇μFμν = −I ν, ∇μF �μν = 0. (23)

Here, Fμν is the Faraday tensor, F�μν ≡ 1
2 εμνλκFλκ its dual, Iμ the

four-current, satisfying the condition ∇μIμ = 0 for electric charge
conservation, ∇μ is the covariant derivative associated to the four-
metric gμν , and εμνλκ the Levi-Civita pseudo-tensor. Notice that here
we have neglected possible polarization and magnetization effects
of the plasma; therefore, we do not make distinction between micro-
scopic and macroscopic fields. While the total energy-momentum
is conserved, we know that the electromagnetic fields act on the
plasma via the Lorentz force, thus

∇μT μν
m = −∇μT

μν
f = −Iμ Fμν, (24)

where T μν
m is the matter contribution and

T
μν

f = FμλF ν
λ − 1

4 gμνF λκFλκ (25)

is the field contribution to the energy-momentum tensor.
Let us now decompose all MHD quantities according to uμ.

When the dissipative terms due to viscosity and heat conduction are
negligible, the matter contribution to the energy-momentum tensor
is simply provided by ideal hydrodynamics as

T μν
m = (ε + p)uμuν + pgμν, (26)

where ε = T μν
m uμuν is the fluid energy density, and p is the pres-

sure (p = ε/3 for an ultrarelativistic gas). The electric current is
decomposed as

Iμ = ρ̃eu
μ + jμ, (27)

where ρ̃e = −Iμuμ is the proper electric charge density and jμ the
conduction current, normal to uμ by construction. The electromag-
netic fields are defined through the Faraday tensor and its dual as

Fμν = uμeν − uνeμ + εμνλκbλuκ,

F �μν = uμbν − uνbμ − εμνλκeλuκ , (28)

where quantities are measured in the comoving frame of the fluid.
Thus, eμ = Fμνuν and bμ = F�μνuν are the electric and magnetic
fields in the fluid rest frame, so that eμuμ = bμuμ = 0 as well as jμuμ

= 0. The electromagnetic contribution to the energy-momentum
tensor can be expressed by using the eμ and bμ fields as

T
μν

f = (e2 + b2)uμuν + 1
2 (e2 + b2)gμν − eμeν − bμbν. (29)

The rate of energy dissipation via Joule heating can be found by
projecting equation (24) along the flow, then

− uν∇μT μν
m = ε̇ + (ε + p)∇μuμ = jμeμ, (30)

vanishing in the ideal MHD as expected, where the dot indicates
the uμ∇μ time-like derivation along uμ.

For resistive plasmas, the relativistic Ohm’s law is generally writ-
ten as

jμ = σμνeν, (31)

where σμν is a tensor of electric conductivity, anisotropic in the
most general case (Bekenstein & Oron 1978). In the isotropic case,
the relation is simply jμ = σeμ, where the conductivity coefficient

is the inverse of the resistivity η introduced in the previous section.
Notice that an evolutionary equation with a finite relaxation time
should be actually introduced in order to avoid non-causal effects,
as for the dissipative effects in extended irreversible hydrodynamics
(Pavon, Jou & Casas-Vazquez 1980). In the ideal MHD limit σμν

→ ∞, and in order to avoid divergent currents in the plasma, we
simply assume that the comoving electric field vanishes, that is, eμ

= 0. Ohmic dissipation from equation (31) is σμνeμeν in the general
case, proportional to e2, or to j2, in the isotropic case, and, of course,
it is zero in the ideal case.

We turn now our attention to the chiral effect, exploiting the
natural parallelism with the dynamo action. Following the same
approach as in Bucciantini & Del Zanna (2013), it is natural to
extend equation (20), valid for classical MHD, to the relativistic case
by expressing the most general Ohm law valid for chiral-dynamo
resistive MHD as

jμ = σEeμ + σBbμ, (32)

where the relations among the conduction current, the electric field
and the magnetic field are assumed to hold in the comoving frame
of the fluid. Here, for simplicity, we have assumed an isotropic
tensor for the Ohmic conductivity (including eventually a mean-
field turbulent contribution), that is, σμν = σ Egμν , and, again, we
have supposed that relaxation times are small compared to advection
times. The second term is the one responsible for the CME, which in
covariant form is naturally expressed as in equation (32), naturally
reducing to the classical expression for low velocities.

4.2 3 + 1 formulation

In view of implementation of the system of our DC-GRMHD equa-
tions in numerical codes, the next necessary step is to move to the
reference frame of the so-called Eulerian observer of velocity nμ,
rather than uμ, as needed to single out the time evolution. This leads
to the so-called 3 + 1 formulation (Alcubierre 2008; Gourgoulhon
2012; Rezzolla & Zanotti 2013). Any vector parallel to nμ will be a
time-like vector, while a vector that is normal to nμ will be a spatial
vector, to be treated with the standard three-metric (for which we
will be using latin indices i, j, . . . = 1, 2, 3). In a Minkowskian
space–time, we simply have nμ = (1, 0), thus basically indicating
the standard laboratory frame.

In the presence of gravity, and hence on a curved manifold, the
3 + 1 form of the space–time metric is usually expressed in terms
of a scalar lapse function α, a spatial vector shift vector β i, and the
three-metric γ ij, that is

ds2 =−α2dt2 + γij (dxi + βidt)(dxj + βj dt) (33)

so that the Eulerian observer has unit vector

nμ = (−α, 0), nμ = (1/α, −βi/α), (34)

reducing to the flat space–time case when α = 1 and β i = 0. The
covariant derivative of nμ can be split as

∇μnν = −nμ∂ν log α − Kμν, (35)

where Kμν is the extrinsic curvature tensor (symmetric and spatial),
which is provided by the solution of Einstein equations together
with γ ij, given the gauge fields α and β i.

In the 3 + 1 formulation, the four velocity of the fluid is conve-
niently split as

uμ = �nμ + �vμ, (36)
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662 L. Del Zanna and N. Bucciantini

where � = −nμuμ = 1/
√

1 − v2 is the usual Lorentz factor for the
three-velocity vi, derived from the normalizing conditions uμuμ =
nμnμ = −1 and vμnμ = 0. The electromagnetic fields are split
according to nμ as usual like

Fμν = nμEν − nνEμ + εμνλκBλnκ,

F �μν = nμBν − nνBμ − εμνλκEλnκ, (37)

where Eμ and Bμ are the standard spatial electric and magnetic
fields, and similarly to equation (29) we may write

T
μν

f = (E2+B2)nμnν + 1
2 (E2+B2)γ μν −EμEν −BμBν. (38)

The conserved total energy-momentum tensor can be equivalently
split as

T μν = Enμnν + Sμnν + Sνnμ + Sμν, (39)

where E = T μνnμnν is the total energy density as measured by
the Eulerian observer, Si = −γ i

μT μνnν is the momentum flux, and
Sij = γ i

μγ j
ν T

μν is the stress tensor. Using the expressions for Tm

and Tf and that for uμ, we find

E = (ε + p)�2 − p + uem,

Si = (ε + p)�2vi + εijkE
jBk,

Sij = (ε + p)�2vivj − EiEj − BiBj + (p + uem)γij , (40)

where uem = 1
2 (E2 + B2) and εijk = √

γ [ijk] is the Levi-Civita
pseudo-tensor for the three-metric, γ = det(γ ij), and [ijk] is the
non-dimensional Levi-Civita symbol.

Consider now the four-current. In the 3 + 1 split, this can be
expressed as

Iμ = ρen
μ + Jμ, (41)

where ρe = −nμIμ is the electric charge density and Jμ is the spatial
current, as measured by the Eulerian observer. By equating the two
relations for Iμ and using the definition of uμ, the conduction current
becomes

jμ = (ρe − ρ̃e�)nμ + Jμ − ρ̃e�vμ, (42)

to be plugged in Ohm’s law. The missing ingredients are the elec-
tromagnetic fields in the comoving frame eμ and bμ, to be expressed
in 3 + 1 form as well. By using equations (28) and (37), we find

eμ = Fμνuν = �[(vνEν)nμ + Eμ + εμνλvνBλ],

bμ =F ∗μνuν = �[(vνBν)nμ + Bμ − εμνλvνEλ], (43)

where εμνλκnκ ≡ εμνλ. The above expressions, together with equa-
tion (42), are then inserted into the covariant form of our generalized
Ohm’s law equation (32). By retrieving ρe� from the time compo-
nent, the spatial part becomes

J i = ρev
i + σE�[Ei + εijkvjBk − (vkE

k)vi]

+ σB�[Bi − εijkvjEk + (vkB
k)vi]. (44)

The above expression (44) for the spatial current is the final 3 + 1
form of our novel Ohm’s law for dynamo-chiral resistive relativistic
MHD, and it applies unchanged to both flat or curved space–times,
thus the above form is perfectly valid for the most general case of
full GRMHD.

Notice that if the additional constraint of a vanishing comoving
charge density were imposed, ρ̃e = 0 ⇒ Iμ ≡ jμ, all terms pro-
portional to vi would vanish in equation (44), but then ρe would

have two conflicting definitions: one as the divergence of Ei from
Maxwell’s equations (see below) and one from the time component
of equation (32).

The set of evolution equations for resistive GRMHD in conserva-
tive form is found by splitting equations (22) and (23) (Bucciantini
& Del Zanna 2013; Dionysopoulou et al. 2013), and we find the
system of nonlinear equations

∂t (
√

γD) + ∂k[
√

γ (αDvk − βkD)] = 0,

∂t (
√

γ Si) + ∂k[
√

γ (αSk
i − βkSi)]

= √
γ ( 1

2 αSlm∂iγlm + Sk∂iβ
k − E∂iα),

∂t (
√

γE) + ∂k[
√

γ (αSk − βkE)] = √
γ (αSlmKlm − Sk∂kα),

∂t (
√

γBi) + [ijk]∂j (αEk + [klm]
√

γβlBm) = 0,

∂t (
√

γEi) − [ijk]∂j (αBk − [klm]
√

γβlEm)

= −√
γ (αJ i − βiρe), (45)

where D = ρ� is the mass density measured by the Eulerian ob-
server. The metric terms should be provided by the solution of
Einstein equations. As an alternative, for a given metric (even time-
dependent), the term with the extrinsic curvature can be also ex-
pressed as

αSlmKlm = 1
2 Slm(βk∂kγlm − ∂tγlm) + Sl

m∂lβ
m. (46)

Notice that the first three hydrodynamics equations contain fluxes
in the standard divergence form, while Maxwell equations in curl
form. This fact is related to the presence of the two non-evolutionary
constraints

∂k(
√

γBk) = 0, ∂k(
√

γEk) = √
γ ρe, (47)

and while the solenoidal constraint for Bi is analytically (but not nu-
merically, especially for shock-capturing schemes) preserved dur-
ing evolution, the second is used to define the charge ρe in both
Ohm’s law and in the equation for Ei. The above GRMHD set is
then a system of 11 evolution equations for the 11 conservative
variables [D, Si, E, Bi, Ei], which is closed by an equation of state
of the form p = P(ρ, ε) and by the generalized Ohm law equa-
tion (44).

In the simplest case of a Minkowskian flat space–time, the set
of dynamo-chiral resistive (special) relativistic MHD equations do
not contain the metric terms, and they can be also expressed in the
more familiar vector form as

∂tD + ∇ · (ρ�v) = 0,

∂t S + ∇ · [(ε + p)�2vv + (p + uem)I − E E − B B] = 0,

∂tE + ∇ · [(ε + p)�2v + E × B] = 0,

∂t B + ∇ × E = 0,

∂t E − ∇ × B = −J, (48)

where the hydrodynamical conserved variables are D = ρ�,
S = (ε + p)�2v + E × B, and E = (ε + p)�2 − p + uem. The re-
maining Maxwell equations are the constraints

∇ · B = 0, ∇ · E = ρe, (49)
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Covariant and 3 + 1 equations for DC-GRMHD 663

Figure 1. DC-GRMHD magnetar model. The magnetic field configuration at two different times of evolution, t = 100 and t = 200. Fieldlines refer to the
poloidal component, whereas color contours to the toroidal one, with values expressed in units of 1015 G.

the latter to be used in Ohm’s law

J = ρev + σE�[E + v × B − (v · E)v]

+ σB�[B − v × E − (v · B)v], (50)

which in spite of the bold face aspect for vectors, is precisely equiv-
alent to equation (44).

5 N U M E R I C A L T E S T: M AG N E TA R M O D E L

For numerical implementation into the ECHOcode (Del Zanna et al.
2007; Bucciantini & Del Zanna 2011) and extensive testing, the
reader is referred to Bucciantini & Del Zanna (2013) and Del Zanna,
Bugli & Bucciantini (2014). Here, it is sufficient to notice that due
to the presence of possibly large values of σ E and σ B (both contain
a resistivity η term in the denominator) in Ohm’s law, stiff source
terms arise in the last equation for the evolution of E, so that
specific numerical methods (e.g. implicit time integration) must be
employed. When the dynamo-chiral coefficient σ B can be neglected,
the set of equations described in the previous section reduces to that
for resistive relativistic MHD in Minkowski metric, see Komissarov
(2007), Palenzuela et al. (2009) and Del Zanna et al. (2016) for
numerical methods and applications.

In this section, we present an example of solution of the DC-
GRMHD equations in a case where strong gravity is important,
namely the growth of an initial magnetic field inside a neutron star
as a simplified model for a (proto)-magnetar. This test was already
presented in Bucciantini & Del Zanna (2013), where the driving
force was the classical dynamo; here, we re-run it in the light of
the (laminar) CME. The space–time metric is calculated assuming
conformal flatness, theoretical details, and the methods employed
for the numerical implementation in the ECHO code can be found in
(Bucciantini & Del Zanna (2011)). The initial neutron star structure
is built using the freely available XNS tool, which can be applied to
very different configurations of density, velocity and magnetic field
(Pili, Bucciantini & Del Zanna 2014, 2015, 2017; Bucciantini, Pili
& Del Zanna 2015; Del Zanna et al. 2018).

The initial configuration is a non-rotating star with central density
ρc = 1.28 × 103 (in geometrized units c = G = M� = 1) and
polytropic equation of state p = Kρ1 + 1/n (assuming K = 100 and n
= 1), with an initial purely toroidal field (here in code units)

BT =
√

BφBφ = 10−4αψ2 r sin θ ρh, (51)

with h = 1 + (1 + n)Kρ1/n the relativistic specific enthalpy. Here, α

is the lapse function and ψ the conformal factor, entering the 3 + 1
conformally flat metric

ds2 = −α2dt2 + ψ4(dr2 + r2dθ2 + r2 sin2θ dφ2). (52)

The electrical and chiral conductivities are considered constant and
uniform in the whole star and are set to σ E = 20 and σ B = −2,
respectively, in order to match the same values employed by Buc-
ciantini & Del Zanna (2013) for the mean-field dynamo test. Here,
we do not consider the possible time evolution of the chiral chem-
ical potential and conductivity, for simplicity. The simulation is
performed in spherical-like coordinates in a domain r = [0, 10],
θ = [ − π , π ] assuming axial symmetry, that is invariance in φ,
up to t = 200. We employ 100 points in the radial direction and
80 along θ ; this low resolution is enough to capture the instability
growth, and the test can be run on a simple laptop. The DC-GRMHD
equations are solved together with Einstein equations, though the
initial equilibrium is only slightly affected by the growing magnetic
field, so results are very similar to those obtained in the Cowling
approximation of a fixed space–time metric.

In Fig. 1, we show the neutron star at half (t = 100) and max-
imum (t = 200) times of evolution, with fieldlines of the poloidal
component and strength of the toroidal one in units of 1015 G, as
indicated by the colors. Notice that the magnetic field changes its
shape during evolution, and above all the CME manages to amplify
the toroidal component from the initial low value, up to BT ∼ 1013

G at t = 100 and BT � 4 × 1015 G at t = 200. Such rapid evolution
can be better appreciated in Fig. 2, where the growth of both the
toroidal and poloidal components is shown in logarithmic scale as a
function of time. Notice the nearly exponential behaviour for both
components, typical of the CME, and the fact that a single dominant
mode is present for the toroidal component, whereas the poloidal
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664 L. Del Zanna and N. Bucciantini

Figure 2. DC-GRMHD magnetar model. The exponential growth in time
of the magnetic field toroidal component BT (red solid line) and poloidal
component BP (blue dashed line) due to the CME.

component BP shows an initial growth followed by an exponential
behaviour for a different eigenmode, with a slower rate, then relax-
ing around t � 140 to the same one responsible for the growth of BT.
For this, we estimate a growth rate γ � 0.034. The value is more or
less what is expected for a laminar dynamo for which γ ∼ αdyn/λ,
using αdyn = |σ B|/σ E = 0.1 and estimating λ ∼ |B|/|∇ B| � 3 from
the figures for the most unstable eigenmode. Notice that times are
in geometrized code units and the value of σ B∝γ has been selected
in order to show a sufficient growth within the chosen evolution
time (realistic values of σ B would certainly require a much longer
evolution).

Further possible applications of chiral/dynamo instabilities in
the GRMHD regime where strong gravity is needed, other than
the interior of magnetars, may be accretion discs orbiting in the
close vicinities of black holes. The growth of the magnetic field
in the kinematical regime for various configurations of the equilib-
rium disc, of the initial seed field, and of the dynamo and dissipa-
tive coefficients was presented by Bugli, Del Zanna & Bucciantini
(2014), whereas the interplay of the other typical disc instabilities
(Papaloizou-Pringle and magneto-rotational) in full 3D simulations
has been recently investigated in detail by Bugli et al. (2018).

6 C O N C L U S I O N S

The CME, which is the quantum phenomenon of creation of an
equilibrium current in a plasma of imbalanced chiral fermions, is
believed to be important in many astrophysical scenarios where the
generation and amplification of magnetic fields is crucial. These
may range from the primordial fireball in the early Universe to the
QGP possibly present in the interior of proto-neutron stars.

In this paper, we have discussed the analogy between the CME
and the dynamo action for relativistic plasmas in the GRMHD
approximation (Bucciantini & Del Zanna 2013), and proposed a
unified formalism for the covariant equations based on the splitting
according to the bulk plasma fluid four-velocity uμ. In particular,
the generalized Ohm’s law involving the conduction current and
the electric and magnetic fields must be written in the comoving
frame, and we have done so by using conductivity coefficients: the
term jμ∝bμ being the chiral-dynamo one and jμ∝eμ the resistive
one. For numerical relativity applications, the covariant equations
have been translated into the 3 + 1 formalism, deriving for the first
time the DC-GRMHD system valid both in flat and curved space–

time. In the latter case, geometrical terms arise in the conservative
variables, fluxes and source terms, to be found from the Einstein
field equations (or prescribed).

An aspect worth of investigation is the relationship between the
CME and magnetic reconnection processes. It is known that the
axial chemical potential μA responsible for the JCME ∝ B conduc-
tion current obeys an evolution equation sourced by an anomaly
term ∝ E · B. This is the same non-ideal term arising in resistive
layers where reconnection processes are important, and it has been
recently argued that the CME may be directly induced by recon-
nection processes, even in absence of an initial chiral imbalance
(Hirono, Kharzeev & Yin 2016). In the case of fully relativistic
plasmas, the reconnection process arising from the tearing instabil-
ity of a thin current sheet has been recently investigated by means
of analytical and numerical modeling, for the first time within rel-
ativistic MHD, in Del Zanna et al. (2016). It was shown that fast
(efficient) reconnection can be easily achieved, as it is required to
explain various high-energy astrophysical scenarios where explo-
sive events are induced by a sudden release of magnetic energy,
like for magnetar eruptions (Lyutikov 2006) or gamma-ray flares in
the Crab nebula (Cerutti et al. 2014; Del Zanna et al. 2016). The
complex interplay between these phenomena and the CME induced
by reconnection itself will be subject of future work.

However, we believe that the primary field of application of this
study will be the investigation of the origin of the high magnetic
fields of (proto)-magnetars, either produced in core collapse or bi-
nary merger events. Newly born and fast-spinning proto-magnetars
have gained increasingly more attention since they are nowadays
considered to be the best candidates for the engine of both long and
short GRBs, including the kilonova ejecta produced in the merger
(Metzger et al. 2011; Bucciantini et al. 2012; Rowlinson et al. 2013;
Metzger, Thompson & Quataert 2018). Such compact objects are
characterized by strong gravity and matter above nuclear density,
so that a fully relativistic treatment is required, and in Section 5
we have shown that the ECHO code is already capable of solving the
DC-GRMHD equations, even with dynamical space–time, in such
an environment.

Future work will be devoted to the investigation of the CME in
realistic magnetar models, including a more appropriate equation
of state which could also be that of a quark star with a core made
up by QGP, as required by recent GRB models (Drago et al. 2016;
Pili et al. 2016). Depending on the temperature, in the dense cores
of proto-neutron stars, conditions favourable to the CME could be
met (Sigl & Leite 2016). If one assumes that μA∝μe (left-chiral
electrons have all turned into neutrinos and the chirality flipping
rate is negligible), an estimate for the field that could be produced
within a few seconds is (Schober et al. 2018)

Bmax � 1.2 × 1012 G
( μe

250MeV

)3/2
(

λ

1cm

)−1/2

, (53)

where a standard value of the Fermi energy for electrons μe � kbT
has been used and λ is the typical correlation scale of the turbulence
induced by the initial small-scale chiral dynamo. Larger values of
μA may be actually needed to reach the B inside magnetars, though
for μA ∼ kbT the CME instability scale may become smaller than
the mean-free path of the plasma, and the MHD description should
be replaced by a kinetic one.
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