25 research outputs found

    COOL-DOWN TIME ESTIMATION THROUGH NUMERICAL ANALYSIS FOR PARTIALLY INSULATED OFFSHORE PIPE-IN-PIPE FIELD JOINTS

    Get PDF
    ABSTRACT Offshore pipe-in-pipe systems require high performance thermal insulation to maintain high fluid temperature at arrival and to avoid hydrate formation during the cool-down process that follows a pipeline shut-down. At field joints, it might be difficult to achieve the design insulation performance due to installation challenges. In these cases, the insulation layer partially fills the gap between the inner and outer pipes and thus "cold spots" could potentially arise at field joints during the pipeline operation and cool-down. In this paper the impact on the thermal performance of partially insulated pipe-in-pipe field joints is evaluated through Computational Fluid Dynamics (CFD). Thermal convection is included in the fluid model for the pipe content and the air gap between the inner and outer pipes. Comparison is also made between the numerical analysis and simplified lumped-parameter models. Results from numerical simulations show that for the case considered no cold spot arises due to a lack of field joint insulation and lengthaveraged Overall Heat Transfer Coefficient (OHTC) can be used to predict the pipeline cool-down time. Numerical predictions have been compared to simulated service test results, which confirm the length-averaging effect on the OHTC. Further studies are recommended to assess potential cost savings that could be achieved for uninsulated field joints

    Predicting respiratory failure in patients infected by SARS-CoV-2 by admission sex-specific biomarkers

    Get PDF
    Background: Several biomarkers have been identified to predict the outcome of COVID-19 severity, but few data are available regarding sex differences in their predictive role. Aim of this study was to identify sex-specific biomarkers of severity and progression of acute respiratory distress syndrome (ARDS) in COVID-19. Methods: Plasma levels of sex hormones (testosterone and 17β-estradiol), sex-hormone dependent circulating molecules (ACE2 and Angiotensin1-7) and other known biomarkers for COVID-19 severity were measured in male and female COVID-19 patients at admission to hospital. The association of plasma biomarker levels with ARDS severity at admission and with the occurrence of respiratory deterioration during hospitalization was analysed in aggregated and sex disaggregated form. Results: Our data show that some biomarkers could be predictive both for males and female patients and others only for one sex. Angiotensin1-7 plasma levels and neutrophil count predicted the outcome of ARDS only in females, whereas testosterone plasma levels and lymphocytes counts only in males. Conclusions: Sex is a biological variable affecting the choice of the correct biomarker that might predict worsening of COVID-19 to severe respiratory failure. The definition of sex specific biomarkers can be useful to alert patients to be safely discharged versus those who need respiratory monitoring

    Classificazione di bersagli man-made da dati radar polarimetrici

    No full text
    L'obiettivo di questa tesi è quello di proporre un nuovo sistema di riconoscimento che, a partire da profili in range ad alta risoluzione polarimetrici, riesca a classicare bersagli man made, basandosi sulle caratteristiche polarimetriche estratte dai bersagli. Per testare l'efficacia dell'algoritmo proposto sono stati utilizzati tre dati reali: un carro armato, delle navi e un furgone. Le acquisizioni del terzo data set sono state fatte in collaborazione della SELEX Galileo con la partecipazione del sottoscritto. Nel complesso l'output del classicatore ci consente di affermare che, utilizzando le informazioni polarimetriche contenute nei proli in range ad alta risoluzione, è possibile classicare con un'apprezzabile affidabilità le varie classi e questo risultato si è vericato su tutti e tre i data set reali

    When cough drives you nuts

    No full text
    oreign body aspiration is a potentially life-threatening event which most frequently occurs in children during the first 3 years of life. Commonly the inhalation of a foreign body presents with acute choking, coughing and respiratory distress; less frequently it can determine milder non- specific respiratory symptoms, which may lead to delayed diagnosis and inappropriate treatments. The lack of specific radiological findings further contributes to delay in prompt removal by rigid bronchoscopy. We describe 2 cases of foreign body aspiration presenting as insidious drug-resistant left-side pneumonia

    Haptics in the Metaverse: Haptic feedback for Virtual, Augmented, Mixed, and eXtended Realities

    No full text
    International audienc

    Evaluation of wearable haptic systems for the fingers in augmented reality applications

    Get PDF
    Although Augmented Reality (AR) has been around for almost five decades, only recently we have witnessed AR systems and applications entering in our everyday life. Representative examples of this technological revolution are the smartphone games “Pokémon GO” and “Ingress” or the Google Translate real-time sign interpretation app. Even if AR applications are already quite compelling and widespread, users are still not able to physically interact with the computer-generated reality. In this respect, wearable haptics can provide the compelling illusion of touching the superimposed virtual objects without constraining the motion or the workspace of the user. In this paper, we present the experimental evaluation of two wearable haptic interfaces for the fingers in three AR scenarios, enrolling 38 participants. In the first experiment, subjects were requested to write on a virtual board using a real chalk. The haptic devices provided the interaction forces between the chalk and the board. In the second experiment, subjects were asked to pick and place virtual and real objects. The haptic devices provided the interaction forces due to the weight of the virtual objects. In the third experiment, subjects were asked to balance a virtual sphere on a real cardboard. The haptic devices provided the interaction forces due to the weight of the virtual sphere rolling on the cardboard. Providing haptic feedback through the considered wearable device significantly improved the performance of all the considered tasks. Moreover, subjects significantly preferred conditions providing wearable haptic feedback

    Combining wearable finger haptics and Augmented Reality: User evaluation using an external camera and the Microsoft HoloLens

    Get PDF
    International audienceAugmented Reality (AR) enriches our physical world with digital content and media, such as 3D models and videos, overlaying in real time the camera view of our smartphone, tablet, laptop, or glasses. Despite the recent massive interest for this technology, it is still not possible to receive rich haptic feedback when interacting with augmented environments. This lack is mainly due to the poor diffusion of suitable haptic interfaces, which should be easy to wear, lightweight, compact, and inexpensive. In this paper, we briefly review the state of the art on wearable haptics and its application in AR. Then, we present three AR use cases, considering tasks of manipulation, guidance, and gaming, using both external cameras with standard screens as well as fully-wearable solutions, using the Microsoft HoloLens. We evaluate these tasks enrolling a total of 34 subjects, analyzing performance and user experience when using a 3-DoF wearable device for the fingertip, a 2-DoF wearable device for the proximal finger phalanx, a vibrotactile ring, and a popular sensory substitution technique (interaction force displayed as a colored bar). Results show that providing haptic feedback through the wearable devices significantly improves the performance , intuitiveness, and comfort of the considered AR tasks

    Serum Mass Spectrometry Proteomics and Protein Set Identification in Response to FOLFOX-4 in Drug-Resistant Ovarian Carcinoma

    Get PDF
    Ovarian cancer is a highly lethal gynecological malignancy. Drug resistance rapidly occurs, and different therapeutic approaches are needed. So far, no biomarkers have been discovered to predict early response to therapies in the case of multi-treated ovarian cancer patients. The aim of our investigation was to identify a protein panel and the molecular pathways involved in chemotherapy response through a combination of studying proteomics and network enrichment analysis by considering a subset of samples from a clinical setting. Differential mass spectrometry studies were performed on 14 serum samples from patients with heavily pretreated platinum-resistant ovarian cancer who received the FOLFOX-4 regimen as a salvage therapy. The serum was analyzed at baseline time (T0) before FOLFOX-4 treatment, and before the second cycle of treatment (T1), with the aim of understanding if it was possible, after a first treatment cycle, to detect significant proteome changes that could be associated with patients responses to therapy. A total of 291 shared expressed proteins was identified and 12 proteins were finally selected between patients who attained partial response or no-response to chemotherapy when both response to therapy and time dependence (T0, T1) were considered in the statistical analysis. The protein panel included APOL1, GSN, GFI1, LCATL, MNA, LYVE1, ROR1, SHBG, SOD3, TEC, VPS18, and ZNF573. Using a bioinformatics network enrichment approach and metanalysis study, relationships between serum and cellular proteins were identified. An analysis of protein networks was conducted and identified at least three biological processes with functional and therapeutic significance in ovarian cancer, including lipoproteins metabolic process, structural component modulation in relation to cellular apoptosis and autophagy, and cellular oxidative stress response. Five proteins were almost independent from the network (LYVE1, ROR1, TEC, GFI1, and ZNF573). All proteins were associated with response to drug-resistant ovarian cancer resistant and were mechanistically connected to the pathways associated with cancer arrest. These results can be the basis for extending a biomarker discovery process to a clinical trial, as an early predictive tool of chemo-response to FOLFOX-4 of heavily treated ovarian cancer patients and for supporting the oncologist to continue or to interrupt the therapy

    ETNK1 mutations induce a mutator phenotype that can be reverted with phosphoethanolamine

    No full text
    Recurrent somatic mutations in ETNK1 (Ethanolamine-Kinase-1) were identified in several myeloid malignancies and are responsible for a reduced enzymatic activity. Here, we demonstrate in primary leukemic cells and in cell lines that mutated ETNK1 causes a significant increase in mitochondrial activity, ROS production, and Histone H2AX phosphorylation, ultimately driving the increased accumulation of new mutations. We also show that phosphoethanolamine, the metabolic product of ETNK1, negatively controls mitochondrial activity through a direct competition with succinate at mitochondrial complex II. Hence, reduced intracellular phosphoethanolamine causes mitochondria hyperactivation, ROS production, and DNA damage. Treatment with phosphoethanolamine is able to counteract complex II hyperactivation and to restore a normal phenotype
    corecore