8 research outputs found

    The serine protease HtrA1 specifically interacts and degrades the tuberous sclerosis complex 2 protein

    No full text
    Hamartin and tuberin are products of the tumor suppressor genes TSC1 and TSC2, respectively. Mutations affecting either gene result in the tuberous sclerosis syndrome, a neurologic genetic disorder characterized by the formation of multiple benign tumors or hamartomas. In this study, we report the identification of TSC2, but not TSC1, as a substrate of HtrA1, a member of the human HtrA family proteins of serine proteases. We show the direct interaction and colocalization in the cytoplasm of HtrA1 and TSC2 and that HtrA1 cleaves TSC2 both in vitro and in vivo. Finally, we show that alterations in HtrA1 expression cause modifications in phosphorylation status of two downstream targets of TSC2: 4E-BP1 and S6K. Our data suggest that, under particular physiologic or pathologic conditions, HtrA1 degrades TSC2 and activates the downstream targets. Considering that HtrA1 levels are significantly increased during embryogenesis, we speculate that one of the targets of HtrA1 activity during fetal development is the TSC2-TSC1 pathway. ©2010 AACR

    The serine protease HtrA1 specifically interacts and degrades the tuberous sclerosis complex 2 protein

    No full text
    Hamartin and tuberin are products of the tumor suppressor genes TSC1 and TSC2, respectively. Mutations affecting either gene result in the tuberous sclerosis syndrome, a neurologic genetic disorder characterized by the formation of multiple benign tumors or hamartomas. In this study, we report the identification of TSC2, but not TSC1, as a substrate of HtrA1, a member of the human HtrA family proteins of serine proteases. We show the direct interaction and colocalization in the cytoplasm of HtrA1 and TSC2 and that HtrA1 cleaves TSC2 both in vitro and in vivo. Finally, we show that alterations in HtrA1 expression cause modifications in phosphorylation status of two downstream targets of TSC2: 4E-BP1 and S6K. Our data suggest that, under particular physiologic or pathologic conditions, HtrA1 degrades TSC2 and activates the downstream targets. Considering that HtrA1 levels are significantly increased during embryogenesis, we speculate that one of the targets of HtrA1 activity during fetal development is the TSC2-TSC1 pathway

    The serine protease HtrA1 specifically interacts and degrades the tuberous sclerosis complex 2 protein

    No full text
    Hamartin and tuberin are products of the tumor suppressor genes TSC1 and TSC2, respectively. Mutations affecting either gene result in the tuberous sclerosis syndrome, a neurologic genetic disorder characterized by the formation of multiple benign tumors or hamartomas. In this study, we report the identification of TSC2, but not TSC1, as a substrate of HtrA1, a member of the human HtrA family proteins of serine proteases. We show the direct interaction and colocalization in the cytoplasm of HtrA1 and TSC2 and that HtrA1 cleaves TSC2 both in vitro and in vivo. Finally, we show that alterations in HtrA1 expression cause modifications in phosphorylation status of two downstream targets of TSC2: 4E-BP1 and S6K. Our data suggest that, under particular physiologic or pathologic conditions, HtrA1 degrades TSC2 and activates the downstream targets. Considering that HtrA1 levels are significantly increased during embryogenesis, we speculate that one of the targets of HtrA1 activity during fetal development is the TSC2-TSC1 pathway. ©2010 AACR

    Concordant morphologic and gene expression data show that a vaccine halts HER-2/neu preneoplastic lesions

    No full text
    While much experimental data shows that vaccination efficiently inhibits a subsequent challenge by a transplantable tumor, its ability to inhibit the progress of autochthonous preneoplastic lesions is virtually unknown. In this article, we show that a combined DNA and cell vaccine persistently inhibits such lesions in a murine HER-2/neu mammary carcinogenesis model. At 10 weeks of age, all of the ten mammary gland samples from HER-2/neu–transgenic mice displayed foci of hyperplasia that progressed to invasive tumors. Vaccination with plasmids coding for the transmembrane and extracellular domain of rat p185(neu) followed by a boost with rp185(neu+) allogeneic cells secreting IFN-γ kept 48% of mice tumor free. At 22 weeks, their mammary glands were indistinguishable from those of 10-week-old untreated mice. Furthermore, the transcription patterns of the two sets of glands coincided. Of the 12,000 genes analyzed, 17 were differentially expressed and related to the antibody response. The use of B cell knockout mice as well as the concordance of morphologic and gene expression data demonstrated that the Ab response is the main mechanism facilitating tumor growth arrest. This finding suggests that a new way can be found to secure the immunologic control of the progression of HER-2/neu preneoplastic lesions
    corecore