52 research outputs found

    Dry-transferred CVD graphene for inverted spin valve devices

    Full text link
    Integrating high-mobility graphene grown by chemical vapor deposition (CVD) into spin transport devices is one of the key tasks in graphene spintronics. We use a van der Waals pickup technique to transfer CVD graphene by hexagonal boron nitride (hBN) from the copper growth substrate onto predefined Co/MgO electrodes to build inverted spin valve devices. Two approaches are presented: (i) a process where the CVD-graphene/hBN stack is first patterned into a bar and then transferred by a second larger hBN crystal onto spin valve electrodes and (ii) a direct transfer of a CVD-graphene/hBN stack. We report record high spin lifetimes in CVD graphene of up to 1.75 ns at room temperature. Overall, the performances of our devices are comparable to devices fabricated from exfoliated graphene also revealing nanosecond spin lifetimes. We expect that our dry transfer methods pave the way towards more advanced device geometries not only for spintronic applications but also for CVD-graphene-based nanoelectronic devices in general where patterning of the CVD graphene is required prior to the assembly of final van der Waals heterostructures.Comment: 5 pages, 3 figure

    High mobility dry-transferred CVD bilayer graphene

    Full text link
    We report on the fabrication and characterization of high-quality chemical vapor-deposited (CVD) bilayer graphene (BLG). In particular, we demonstrate that CVD-grown BLG can mechanically be detached from the copper foil by an hexagonal boron nitride (hBN) crystal after oxidation of the copper-to-BLG interface. Confocal Raman spectroscopy reveals an AB-stacking order of the BLG crystals and a high structural quality. From transport measurements on fully encapsulated hBN/BLG/hBN Hall bar devices we extract charge carrier mobilities up to 180,000 cm2^2/(Vs) at 2 K and up to 40,000 cm2^2/(Vs) at 300 K, outperforming state-of-the-art CVD bilayer graphene devices. Moreover, we show an on-off ration of more than 10,000 and a band gap opening with values of up to 15 meV for a displacement field of 0.2 V/nm in such CVD grown BLG.Comment: 5 pages, 4 figure

    Identifying suitable substrates for high-quality graphene-based heterostructures

    Full text link
    We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.Comment: 6 pages, 5 figure

    Quantum transport through MoS2_2 constrictions defined by photodoping

    Full text link
    We present a device scheme to explore mesoscopic transport through molybdenum disulfide (MoS2_2) constrictions using photodoping. The devices are based on van-der-Waals heterostructures where few-layer MoS2_2 flakes are partially encapsulated by hexagonal boron nitride (hBN) and covered by a few-layer graphene flake to fabricate electrical contacts. Since the as-fabricated devices are insulating at low temperatures, we use photo-induced remote doping in the hBN substrate to create free charge carriers in the MoS2_2 layer. On top of the device, we place additional metal structures, which define the shape of the constriction and act as shadow masks during photodoping of the underlying MoS2_2/hBN heterostructure. Low temperature two- and four-terminal transport measurements show evidence of quantum confinement effects.Comment: 9 pages, 6 figure

    Spin lifetimes exceeding 12 nanoseconds in graphene non-local spin valve devices

    Full text link
    We show spin lifetimes of 12.6 ns and spin diffusion lengths as long as 30.5 \mu m in single layer graphene non-local spin transport devices at room temperature. This is accomplished by the fabrication of Co/MgO-electrodes on a Si/SiO2_2 substrate and the subsequent dry transfer of a graphene-hBN-stack on top of this electrode structure where a large hBN flake is needed in order to diminish the ingress of solvents along the hBN-to-substrate interface. Interestingly, long spin lifetimes are observed despite the fact that both conductive scanning force microscopy and contact resistance measurements reveal the existence of conducting pinholes throughout the MgO spin injection/detection barriers. The observed enhancement of the spin lifetime in single layer graphene by a factor of 6 compared to previous devices exceeds current models of contact-induced spin relaxation which paves the way towards probing intrinsic spin properties of graphene.Comment: 8 pages, 5 figure

    Gate-defined electron-hole double dots in bilayer graphene

    Full text link
    We present gate-controlled single, double, and triple dot operation in electrostatically gapped bilayer graphene. Thanks to the recent advancements in sample fabrication, which include the encapsulation of bilayer graphene in hexagonal boron nitride and the use of graphite gates, it has become possible to electrostatically confine carriers in bilayer graphene and to completely pinch-off current through quantum dot devices. Here, we discuss the operation and characterization of electron-hole double dots. We show a remarkable degree of control of our device, which allows the implementation of two different gate-defined electron-hole double-dot systems with very similar energy scales. In the single dot regime, we extract excited state energies and investigate their evolution in a parallel magnetic field, which is in agreement with a Zeeman-spin-splitting expected for a g-factor of two.Comment: 5 pages, 5 figure

    Raman spectroscopy as probe of nanometer-scale strain variations in graphene

    Full text link
    Confocal Raman spectroscopy is a versatile, non-invasive investigation tool and a major workhorse for graphene characterization. Here we show that the experimentally observed Raman 2D line width is a measure of nanometer-scale strain variations in graphene. By investigating the relation between the G and 2D line at high magnetic fields we find that the 2D line width contains valuable information on nanometer-scale flatness and lattice deformations of graphene, making it a good quantity for classifying the structural quality of graphene even at zero magnetic field.Comment: 7 pages, 4 figure

    Tunable interdot coupling in few-electron bilayer graphene double quantum dots

    Full text link
    We present a highly controllable double quantum dot device based on bilayer graphene. Using a device architecture of interdigitated gate fingers, we can control the interdot tunnel coupling between 1 to 4 GHz and the mutual capacitive coupling between 0.2 and 0.6 meV, independently of the charge occupation of the quantum dots. The charging energy and hence the dot size remains nearly unchanged. The tuning range of the tunnel coupling covers the operating regime of typical silicon and GaAs spin qubit devices.Comment: 6 pages, 4 figure

    Effects of self-heating on fT and fmax performance of graphene field-effect transistors

    Get PDF
    It has been shown that there can be a significant temperature increase in graphene field-effect transistors (GFETs) operating under high drain bias, which is required for power gain. However, the possible effects of self-heating on the high-frequency performance of GFETs have been weakly addressed so far. In this article, we report on an experimental and theoretical study of the effects of self-heating on dc and high-frequency performance of GFETs by introducing a method that allows accurate evaluation of the effective channel temperature of GFETs with a submicrometer gate length. In the method, theoretical expressions for the transit frequency (fT) and the maximum frequency of oscillation (fmax) based on the small-signal equivalent circuit parameters are used in combination with the models of the field- and temperature-dependent charge carrier concentration, velocity, and saturation velocity of GFETs. The thermal resistances found by our method are in good agreement with those obtained by the solution of the Laplace equation and by the method of thermo-sensitive electrical parameters. Our experiments and modeling indicate that the self-heating can significantly degrade the fT and fmax of GFETs at power densities above 1 mW/μm\ub2, from approximately 25 to 20 GHz. This article provides valuable insights for further development of GFETs, taking into account the self-heating effects on the high-frequency performance
    • …
    corecore