135 research outputs found

    Stratigrafia magnetica ad alta risoluzione del limite Eocene-Oligocene nella successione Umbro-Marchigiana

    Get PDF
    High-resolution magnetostratigraphy across the Eocene-Oligocene boundary has been employed in a detailed investigation of the nature of low-amplitude, short-wavelength oceanic magnetic anomalies. A core, 39.4mlong and 10 cm in diameter, was drilled through the Eocene-Oligocene boundary near to the Massignano Quarry stratotype section near Ancona, Italy. The stratigraphy of the core, which traverses the Scaglia Variegata and Scaglia Cinerea formations, was correlated precisely to the quarry section by linear regression of the depths of identifiable biotite-rich layers. The good recovery of intact material allowed an average sampling interval of about 12 cm, which is closer than in preceding magnetostratigraphic studies of Umbrian-Marche sequences. The characteristic remanent magnetization was obtained by both progressive alternating field and thermal demagnetizations. The stable component of the natural remanent magnetization could be isolated by thermal demagnetization at temperatures of 300-540°C or by alternating field demagnetization in fields higher than 20 mT. It is probably carried by magnetite in the Scaglia Cinerea marls, while some amount of hematite is present in the underlying Scaglia Variegata. A stratigraphic plot of the ChRM directions shows well-defined magnetozones and the resulting polarity sequence correlates well with polarity chrons C12r to C16n-2. A few single-sample normal magnetozones that do not correspond to the geomagnetic polarity timescale are found within chron 16n.1-r. The magnetozones corresponding to chrons C12r or C13r do not exhibit short subchrons that might account for the low-amplitude and short-wavelength magnetic anomalies reported in this part of the marine magnetic record. In investigation of relative paleointensity fluctuations has been carried out in this part of the core, which embraces the Scaglia Cinerea formation. Anhysteretic remanent magnetization (ARM) has been used to normalize the natural remanent magnetization (NRM), compensating variations in sedimentary input. The ensuing NRM/ARM ratio is taken to be a proxy for relative variation of paleomagnetic field intensity. The paleointensity fluctuates systematically and has minimum values close to the reported positions of low-amplitude, short-wavelength magnetic anomalies in the marine recor

    CAMBIAMENTI AMBIENTALI IN SEDIMENTI MARINI RECENTI E PALEOGENICI STUDIATI TRAMITE LE PROPRIETA' MAGNETICHE

    Get PDF
    1994/1995VIII Ciclo1963Versione digitalizzata della tesi di dottorato cartacea. Nell'originale cartaceo errata numerazione delle pagin

    Meteoric smoke concentration in the Vostok ice core estimated from superparamagnetic relaxation and some consequences for estimates of Earth accretion rate

    Get PDF
    We measured the magnetization of glacial and interglacial ice from the Vostok core to estimate the meteoric smoke concentration in Antarctic ice. We have found that, within the uncertainty of the method, the smoke concentration in ice in Antarctica is equivalent to that previously measured in Greenland ice. The virtually identical smoke concentrations despite the different ice accumulation rates in Greenland and Antarctica suggest that wet deposition is the main deposition mechanism for such ultra-small particles. Given the typical scavenging ratios for atmospheric aerosols, this would imply that previous estimates of accretion rate based on dry deposition are likely to be appreciably overestimated

    Enhanced magnetization of the Marlboro Clay as a product of soil pyrogenesis at the Paleocene-Eocene boundary?

    Get PDF
    The kaolinite-rich Marlboro Clay was deposited on the inner shelf in the Salisbury Embayment of the U.S. Atlantic margin at the onset of the carbon isotope excursion marking the 56 Ma Paleocene– Eocene boundary and is characterized by an anomalously high concentration of magnetic nanoparticles of enigmatic origin that give rise to notably intense bulk magnetization. Recent studies point to a magnetic assemblage that is dominated by single-domain magnetite particles that tend to be isolated rather than arranged in chains, the most distinguishing feature of magnetotactic bacteria fossils. On the other hand, it is very unlikely that the nanoparticles can be condensates of an impact plume given the meter-scale thickness of the Marlboro Clay. We obtained new data from a landward proximal site at Wilson Lake on the New Jersey Coastal Plain and find that the abrupt increase in magnetite nanoparticles is virtually coincident stratigraphically with the recently reported impact spherule layer at the base of the Marlboro Clay in the same core. Yet the high field magnetic susceptibility, a measure of total iron concentration, and strontium isotope values on bulk sediment, an indicator of sediment weathering provenance, are not different in the Marlboro Clay from the immediately underlying Vincentown Formation. We suggest that the distinctive magnetic properties of the Marlboro Clay originated from pyromagnetic soil enhancement by widespread wildfires on the adjoining drainage area. The pyrogenetic products were soon washed from the denuded landscape and rapidly deposited as mud-waves across the shelf, becoming the Marlboro Clay. A few percent of incinerated biomass ends up as calcite known as wood ash stone and can inherit its light carbon isotope composition. Disseminated wood ash stone entrained in the Marlboro Clay could contribute to the landward increase in amplitude of the carbon isotope excursion in bulk carbonate data. A plausible trigger for the initial conflagration is a fireball from the impact of a sizable extraterrestrial object at moderate range
    • …
    corecore