159 research outputs found

    SOD1, from Bench to Bed: New Role for the Oldest Protein Implicated in ALS

    Get PDF
    In 1993, the first superoxide dismutase 1 (SOD1) mutation in amyotrophic lateral sclerosis (ALS) patients has been described by Rosen et al. successively, the scientific literature focused on the role of SOD1 in the pathogenesis of ALS. While a clear genetic scenario has been presented, heterogeneous data have been formulated regarding transcriptional and post-transcriptional regulation of SOD1 so far. In particular, the dilemma concerns the SOD1 protein expression, in the direction of a loss of function of the wild-type SOD1 or a toxic gain of function of the altered SOD1, both in FALS (mutant-SOD1) and in SALS (misfolded-SOD1). In this chapter, we focus on the evolution of scientific knowledge about SOD1 protein in ALS patients, reviewing in detail the results obtained using peripheral blood cells in this research field. To conclude, we propose a brief summary of the described clinical correlation and discuss the possible SOD1 implication as a biomarker of ALS

    Photocatalytic activity of nanotubular TiO2films obtained by anodic oxidation: A comparison in gas and liquid phase

    Get PDF
    The availability of immobilized nanostructured photocatalysts is of great importance in the purification of both polluted air and liquids (e.g., industrial wastewaters). Metal-supported titanium dioxide films with nanotubular morphology and good photocatalytic efficiency in both environments can be produced by anodic oxidation, which avoids release of nanoscale materials in the environment. Here we evaluate the effect of different anodizing procedures on the photocatalytic activity of TiO2nanostructures in gas and liquid phases, in order to identify the most efficient and robust technique for the production of TiO2layers with different morphologies and high photocatalytic activity in both phases. Rhodamine B and toluene were used as model pollutants in the two media, respectively. It was found that the role of the anodizing electrolyte is particularly crucial, as it provides substantial differences in the oxide specific surface area: nanotubular structures show remarkably different activities, especially in gas phase degradation reactions, and within nanotubular structures, those produced by organic electrolytes lead to better photocatalytic activity in both conditions tested

    Pathological Proteins Are Transported by Extracellular Vesicles of Sporadic Amyotrophic Lateral Sclerosis Patients

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive adult-onset neurodegenerative disease, that affects cortical, bulbar and spinal motor neurons, and it is considered a proteinopathy, in which pathological proteins (SOD1, TDP-43, and FUS) may accumulate and interfere with neuronal functions eventually leading to cell death. These proteins can be released from cells and transported in the body fluids by extracellular vesicles (EVs). EVs are spherical vesicles, which are classified mainly in microvesicles (MVs) and exosomes (EXOs) based on their biogenesis, size and surface markers. In this study we characterized MVs and EXOs isolated from plasma of sporadic ALS patients and healthy controls and determined their number, size and SOD1, TDP-43, and FUS protein composition. No variation was found in the number of EVs between ALS patients and controls. However, the mean size both for MVs and for EXOs resulted increased in ALS patients compared to controls. MVs derived from ALS patients were enriched in SOD1, TDP-43, phospho-TDP-43, and FUS proteins compared to CTRLs. SOD1 was generally more concentrated in EXOs than in MVs, while TDP-43 and FUS protein levels were slightly higher in MVs than in EXOs. We demonstrated that MVs and EXOs size were increased in ALS patients compared to controls and that MVs of ALS patients were enriched with toxic proteins compared to CTRLs. EXOs did not show any protein changes. These data may suggest that MVs can transport toxic proteins and might play a role in prion-like propagation of ALS disease

    Leukocyte Derived Microvesicles as Disease Progression Biomarkers in Slow Progressing Amyotrophic Lateral Sclerosis Patients

    Get PDF
    The lack of biomarkers in Amyotrophic Lateral Sclerosis (ALS) makes it difficult to determine the stage of the disease in patients and, therefore, it delays therapeutic trials. Microvesicles (MVs) are possible biomarkers implicated in physiological and pathological functions, however, their role in ALS remains unclear. We investigated whether plasma derived microvesicles could be overrepresented in a group of 40 patients affected by ALS compared to 28 Alzheimer’s Disease (AD) patients and 36 healthy volunteers. Leukocyte derived MVs (LMVs) compared to endothelial, platelet, erythrocyte derived MVs, were mostly present in ALS patients compared to AD patients and healthy donors. Correlation analysis corrected for the presence of confounding variables (riluzole, age at onset, site of onset, gender) was tested between PRL (Progression Rate at the Last visit) and LMVs, and a statistically significant value was found (Pearson partial correlation r = 0.407, p = 0.006). We also investigated SOD1, TDP-43 intravesicular protein level in LMVs. Misfolded SOD1 was selectively transported by LMVs and its protein level was associated with the percentage of LMVs in slow progressing patients (r = 0.545, p = 0.033). Our preliminary findings suggest that LMVs are upregulated in ALS patients and they can be considered possible markers of disease progression

    New Porous Heterostructures Based on Organo-Modified Graphene Oxide for CO(2)Capture

    Get PDF
    In this work, we report on a facile and rapid synthetic procedure to create highly porous heterostructures with tailored properties through the silylation of organically modified graphene oxide. Three silica precursors with various structural characteristics (comprising alkyl or phenyl groups) were employed to create high-yield silica networks as pillars between the organo-modified graphene oxide layers. The removal of organic molecules through the thermal decomposition generates porous heterostructures with very high surface areas (>= 500 m(2)/g), which are very attractive for potential use in diverse applications such as catalysis, adsorption and as fillers in polymer nanocomposites. The final hybrid products were characterized by X-ray diffraction, Fourier transform infrared and X-ray photoelectron spectroscopies, thermogravimetric analysis, scanning electron microscopy and porosity measurements. As proof of principle, the porous heterostructure with the maximum surface area was chosen for investigating its CO(2)adsorption properties

    Identification of a novel pathway in sporadic Amyotrophic Lateral Sclerosis mediated by the long non-coding RNA ZEB1-AS1

    Get PDF
    Background: Deregulation of transcription in the pathogenesis of sporadic Amyotrophic Lateral Sclerosis (sALS) is taking central stage with RNA-sequencing analyses from sALS patients tissues highlighting numerous deregulated long non-coding RNAs (lncRNAs). The oncogenic lncRNA ZEB1-AS1 is strongly downregulated in peripheral blood mononuclear cells of sALS patients. In addition, in cancer-derived cell lines, ZEB1-AS1 belongs to a negative feedback loop regulation with hsa-miR-200c, acting as a molecular sponge for this miRNA. The role of the lncRNA ZEB1-AS1 in sALS pathogenesis has not been characterized yet, and its study could help identifying a possible disease-modifying target. Methods: the implication of the ZEB1-AS1/ZEB1/hsa-miR-200c/BMI1 pathway was investigated in multiple patients-derived cellular models (patients-derived peripheral blood mononuclear cells and induced pluripotent stem cells-derived neural stem cells) and in the neuroblastoma cell line SH-SY5Y, where its function was inhibited via RNA interference. Molecular techniques such as Real Time PCR, Western Blot and Immunofluorescence were used to assess the pathway dysregulation. Results: Our results show a dysregulation of a signaling pathway involving ZEB1-AS1/hsa-miR-200c/β-Catenin in peripheral blood mononuclear cells and in induced pluripotent stem cells-derived neural stem cells from sALS patients. These results were validated in vitro on the cell line SH-SY5Y with silenced expression of ZEB1-AS1. Moreover, we found an increase for ZEB1-AS1 during neural differentiation with an aberrant expression of β-Catenin, highlighting also its aggregation and possible impact on neurite length. Conclusions: Our results support and describe the role of ZEB1-AS1 pathway in sALS and specifically in neuronal differentiation, suggesting that an impairment of β-Catenin signaling and an alteration of the neuronal phenotype are taking place

    Pyrazole-Based Acid Ceramidase Inhibitors: Design, Synthesis, and Structure–Activity Relationships

    Full text link
    Acid ceramidase (AC) is a lysosomal cysteine amidase responsible for the cleavage of ceramide into sphingosine, which is then phosphorylated to sphingosine 1-phosphate. AC regulates the intracellular levels of ceramide and sphingosine, and AC inhibition may be useful in the treatment of disorders, such as cancer, in which ceramide-mediated signaling may be dysfunctional. Despite their potential experimental and therapeutic value, the number of available small-molecule inhibitors of AC activity remains limited. In the present study is described the discovery of a class of potent pyrazole carboxamide-based AC inhibitors, which were identified using the atomic property field (APF) approach and developed through systematic SAR investigations and in vitro pharmacological characterization. The best compound of this series inhibits AC with nanomolar potency and causes ceramide accumulation and sphingosine depletion in intact G361 proliferative melanoma cells. By expanding the current armamentarium of AC inhibitors, these results should facilitate future efforts to unravel the biology of AC and the therapeutic potential of its inhibition.</p

    Characterization of Skeletal Muscle Biopsy and Derived Myoblasts in a Patient Carrying Arg14del Mutation in Phospholamban Gene.

    Get PDF
    Phospholamban is involved in the regulation of the activity and storage of calcium in cardiac muscle. Several mutations have been identified in the PLN gene causing cardiac disease associated with arrhythmogenic and dilated cardiomyopathy. The patho-mechanism underlying PLN mutations is not fully understood and a specific therapy is not yet available. PLN mutated patients have been deeply investigated in cardiac muscle, but very little is known about the effect of PLN mutations in skeletal muscle. In this study, we investigated both histological and functional features in skeletal muscle tissue and muscle-derived myoblasts from an Italian patient carrying the Arg14del mutation in PLN. The patient has a cardiac phenotype, but he also reported lower limb fatigability, cramps and fasciculations. The evaluation of a skeletal muscle biopsy showed histological, immunohistochemical and ultrastructural alterations. In particular, we detected an increase in the number of centronucleated fibers and a reduction in the fiber cross sectional area, an alteration in p62, LC3 and VCP proteins and the formation of perinuclear aggresomes. Furthermore, the patient's myoblasts showed a greater propensity to form aggresomes, even more marked after proteasome inhibition compared with control cells. Further genetic and functional studies are necessary to understand whether a definition of PLN myopathy, or cardiomyopathy plus, can be introduced for selected cases with clinical evidence of skeletal muscle involvement. Including skeletal muscle examination in the diagnostic process of PLN-mutated patients can help clarify this issue.This work was partially supported by the Italian Ministry of Health (Ministero della Salute, Ricerca Corrente 245)S
    • …
    corecore