430 research outputs found

    Simultaneous Object Recognition and Segmentation from Single or Multiple Model Views

    Get PDF
    We present a novel Object Recognition approach based on affine invariant regions. It actively counters the problems related to the limited repeatability of the region detectors, and the difficulty of matching, in the presence of large amounts of background clutter and particularly challenging viewing conditions. After producing an initial set of matches, the method gradually explores the surrounding image areas, recursively constructing more and more matching regions, increasingly farther from the initial ones. This process covers the object with matches, and simultaneously separates the correct matches from the wrong ones. Hence, recognition and segmentation are achieved at the same time. The approach includes a mechanism for capturing the relationships between multiple model views and exploiting these for integrating the contributions of the views at recognition time. This is based on an efficient algorithm for partitioning a set of region matches into groups lying on smooth surfaces. Integration is achieved by measuring the consistency of configurations of groups arising from different model views. Experimental results demonstrate the stronger power of the approach in dealing with extensive clutter, dominant occlusion, and large scale and viewpoint changes. Non-rigid deformations are explicitly taken into account, and the approximative contours of the object are produced. All presented techniques can extend any view-point invariant feature extracto

    Unique growth pattern of human mammary epithelial cells induced by polymeric nanoparticles.

    Get PDF
    Due to their unique properties, engineered nanoparticles (NPs) have found broad use in industry, technology, and medicine, including as a vehicle for drug delivery. However, the understanding of NPs' interaction with different types of mammalian cells lags significantly behind their increasing adoption in drug delivery. In this study, we show unique responses of human epithelial breast cells when exposed to polymeric Eudragit® RS NPs (ENPs) for 1-3 days. Cells displayed dose-dependent increases in metabolic activity and growth, but lower proliferation rates, than control cells, as evidenced in tetrazolium salt (WST-1) and 5-bromo-2'-deoxyuridine (BrdU) assays, respectively. Those effects did not affect cell death or mitochondrial fragmentation. We attribute the increase in metabolic activity and growth of cells culture with ENPs to three factors: (1) high affinity of proteins present in the serum for ENPs, (2) adhesion of ENPs to cells, and (3) activation of proliferation and growth pathways. The proteins and genes responsible for stimulating cell adhesion and growth were identified by mass spectrometry and Microarray analyses. We demonstrate a novel property of ENPs, which act to increase cell metabolic activity and growth and organize epithelial cells in the epithelium as determined by Microarray analysis

    Liquid Mirror Telescopes: A progress report

    Get PDF
    We review the present status of liquid mirror telescopes. Interferometric tests of liquid mirrors (the largest one having a diameter of 2.5 meters ) show excellent optical qualities. The basic technology is now sufficiently reliable that it can be put to work. Indeed, a handful of liquid mirrors have now been built that are used for scientific work. A 3.7-m diameter LMT is presently being built in the new Laval upgraded testing facilities. Construction of the mirror can be followed on the Web site: http://astrosun.phy.ulaval.ca/lmt/lmt- home.html. Finally we address the issue of the field accessible to LMTs equipped with novel optical correctors. Optical design work, and some exploratory laboratory work, indicate that a single LMT should be able to access, with excellent images, small regions anywhere inside fields as large as 45 degrees.Comment: To appear in the SPIE conference proceedings 'Optical Telescopes of Today and Tomorrow', May 29 - June1, Landskrona/Hven, Sweden, Additional info on LMs at: http://astrosun.phy.ulaval.ca/lmt/lmt-home.htm

    Beyond SOT: Tracking Multiple Generic Objects at Once

    Full text link
    Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. Multi-object GOT benefits from a wider applicability, rendering it more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows users to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. In addition, we propose a transformer-based GOT tracker baseline capable of joint processing of multiple objects through shared computation. Our approach achieves a 4x faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. In addition, our approach achieves highly competitive results on single-object GOT datasets, setting a new state of the art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, and trained models will be made publicly available.Comment: accepted by WACV'2

    Object Detection by Contour Segment Networks

    Get PDF

    Novel pumping schemes of Mid-IR photonic crystal fiber lasers for aerospace applications

    Get PDF
    The paper illustrates the design of two pumping schemes for Mid-IR lasers based on photonic crystal fibers (PCFs) made of dysprosium doped chalcogenide glass Dy3+:Ga5Ge20Sb10S65. The simulation is performed by taking into account the spectroscopic parameters measured on the rare earth-doped glass sample in order to perform a realistic feasibility investigation. The first pump scheme provides an optical beam emission close to 4400 nm wavelength by employing two pump beams at the wavelengths close to 2800 nm and 4100 nm, respectively. The second pump scheme allows beam emission close to 4400 nm wavelength via a 1700 nm pump, its efficiency is increased by including a suitable optical amplifier after the laser cavity. The proposed light sources based on chalcogenide glass photonic crystal fibers (PCFs) doped with Dy3+ ions are investigated via a home-made numerical model based on the coupled mode theory and solving the rare earth rate equations. A number of promising applications in different areas such as satellite remote sensing and aerospace, biology, molecular spectroscopy and environmental monitoring are feasible

    Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission

    Get PDF
    The paper describes the design of a medium infrared fiber laser based on a dysprosium-doped chalcogenide glass Dy3+ : Ga5 Ge20Sb10S65. To obtain a high efficiency, the fiber laser is followed by an optical amplifier making use of residual pump power. The optimized optical source exploits a master oscillator power amplifier (MOPA) configuration. The MOPA pump and signal wavelengths are 1709 and 4384 nm, respectively. Spectroscopic parameters measured on preliminary samples of chalcogenide glasses are taken into account to fulfill realistic simulations. The MOPA emission is maximized by applying a particle swarm optimization approach. For an input pump power of 3 W, an output power of 637 mW can be obtained for optical fiber losses close to 1 dB m-1. The optimized MOPA configuration allows a laser efficiency larger than 21%
    corecore