535 research outputs found

    Theory of severe slowdown in the relaxation of rings and clusters with antiferromagnetic interactions

    Get PDF
    We show that in the severe slowing down temperature regime the relaxation of antiferromagnetic rings and similar magnetic nanoclusters is governed by the quasi-continuum portion of their quadrupolar fluctuation spectrum and not by the lowest excitation lines. This is at the heart of the intriguing near-universal power-law temperature dependence of the electronic correlation frequency ωc\omega_c with an exponent close to 4. The onset of this behavior is defined by an energy scale which is fixed by the lowest spin gap Δ0\Delta_0. This explains why experimental curves of ωc\omega_c for different cluster sizes and spins nearly coincide when TT is rescaled by Δ0\Delta_0.Comment: new slightly extended version (6 pages, 1 fig. added

    Continuous families of isospectral Heisenberg spin systems and the limits of inference from measurements

    Full text link
    We investigate classes of quantum Heisenberg spin systems which have different coupling constants but the same energy spectrum and hence the same thermodynamical properties. To this end we define various types of isospectrality and establish conditions for their occurence. The triangle and the tetrahedron whose vertices are occupied by spins 1/2 are investigated in some detail. The problem is also of practical interest since isospectrality presents an obstacle to the experimental determination of the coupling constants of small interacting spin systems such as magnetic molecules

    Quantum rotational band model for the Heisenberg molecular magnet Mo72Fe30

    Full text link
    We derive the low temperature properties of the molecular magnet Mo72Fe30, where 30 Fe(3+) paramagnetic ions occupy the sites of an icosidodecahedron and interact via isotropic nearest-neighbour antiferromagnetic Heisenberg exchange. The key idea of our model (J.S. & M.L.) is that the low-lying excitations form a sequence of rotational bands, i.e., for each such band the excitation energies depend quadratically on the total spin quantum number. For temperatures below 50 mK we predict that the magnetisation is described by a staircase with 75 equidistant steps as the magnetic field is increased up to a critical value and saturated for higher fields. For higher temperatures thermal broadening effects wash out the staircase and yield a linear ramp below the critical field, and this has been confirmed by our measurements (R.M.). We demonstrate that the lowest two rotational bands are separated by an energy gap of 0.7 meV, and this could be tested by EPR and inelastic neutron scattering measurements. We also predict the occurrence of resonances at temperatures below 0.1 K in the proton NMR spin-lattice relaxation rate associated with level crossings. As rotational bands characterize the spectra of many magnetic molecules our method opens a new road towards a description of their low-temperature behaviour which is not otherwise accessible.Comment: 7 pages, 6 figures, accepted for Europhysics Letter

    Book Reviews

    Get PDF

    Spin dynamics of quantum and classical Heisenberg dimers

    Full text link
    Analytical solutions for the time-dependent autocorrelation function of the classical and quantum mechanical spin dimer with arbitrary spin are presented and compared. For large spin quantum numbers or high temperature the classical and the quantum dimer become more and more similar, yet with the major difference that the quantum autocorrelation function is periodic in time whereas the classical is not.Comment: 10 pages, 4 postscript figures, uses 'epsfig.sty'. Submitted to Physica A. More information available at http://www.physik.uni-osnabrueck.de/makrosysteme

    Multiple nearest-neighbor exchange model for the frustrated magnetic molecules Mo72Fe30 and Mo72Cr30

    Full text link
    Our measurements of the differential susceptibility dM/dH of the frustrated magnetic molecules Mo72Fe30 and Mo72Cr30 reveal a pronounced dependence on magnetic field (H) and temperature (T) in the low H - low T regime, contrary to the predictions of existing models. Excellent agreement with experiment is achieved upon formulating a nearest-neighbor classical Heisenberg model where the 60 nearest-neighbor exchange interactions in each molecule, rather than being identical as has been assumed heretofore, are described by a two-parameter probability distribution of values of the exchange constant. We suggest that the probability distribution provides a convenient phenomenological platform for summarizing the combined effects of multiple microscopic mechanisms that disrupt the idealized picture of a Heisenberg model based on a single value of the nearest-neighbor exchange constant.Comment: 8 pages, 5 figure

    Bounding and approximating parabolas for the spectrum of Heisenberg spin systems

    Full text link
    We prove that for a wide class of quantum spin systems with isotropic Heisenberg coupling the energy eigenvalues which belong to a total spin quantum number S have upper and lower bounds depending at most quadratically on S. The only assumption adopted is that the mean coupling strength of any spin w.r.t. its neighbours is constant for all N spins. The coefficients of the bounding parabolas are given in terms of special eigenvalues of the N times N coupling matrix which are usually easily evaluated. In addition we show that the bounding parabolas, if properly shifted, provide very good approximations of the true boundaries of the spectrum. We present numerical examples of frustrated rings, a cube, and an icosahedron.Comment: 8 pages, 3 figures. Submitted to Europhysics Letter

    Time Correlation Functions of Three Classical Heisenberg Spins on an Isosceles Triangle and on a Chain: Strong Effects of Broken Symmetry

    Full text link
    At arbitrary temperature TT, we solve for the dynamics of single molecule magnets composed of three classical Heisenberg spins either on a chain with two equal exchange constants J1J_1, or on an isosceles triangle with a third, different exchange constant J2J_2. As T\rightrarrow\infty, the Fourier transforms and long-time asymptotic behaviors of the two-spin time correlation functions are evaluated exactly. The lack of translational symmetry on a chain or an isosceles triangle yields time correlation functions that differ strikingly from those on an equilateral trinagle with J1=J2J_1=J_2. At low TT, the Fourier transforms of the two autocorrelation functions with J1≠J2J_1\ne J_2 show one and four modes, respectively. For a semi-infinite J2/J1J_2/J_1 range, one mode is a central peak. At the origin of this range, this mode has a novel scaling form.Comment: 9 pages, 14 figures, accepted for publication in Phys. Rev.

    Generalization of the Darboux transformation and generalized harmonic oscillators

    Full text link
    The Darbroux transformation is generalized for time-dependent Hamiltonian systems which include a term linear in momentum and a time-dependent mass. The formalism for the NN-fold application of the transformation is also established, and these formalisms are applied for a general quadratic system (a generalized harmonic oscillator) and a quadratic system with an inverse-square interaction up to N=2. Among the new features found, it is shown, for the general quadratic system, that the shape of potential difference between the original system and the transformed system could oscillate according to a classical solution, which is related to the existence of coherent states in the system

    Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding

    Get PDF
    The Ebola virus (EBOV) envelope glycoprotein (GP) is a membrane fusion machine required for virus entry into cells. Following endocytosis of EBOV, the GP1 domain is cleaved by cellular cathepsins in acidic endosomes, removing the glycan cap and exposing a binding site for the Niemann-Pick C1 (NPC1) receptor. NPC1 binding to cleaved GP1 is required for entry. How this interaction translates to GP2 domain-mediated fusion of viral and endosomal membranes is not known. Here, using a bulk fluorescence dequenching assay and single-molecule Forster resonance energy transfer (smFRET)-imaging, we found that acidic pH, Ca2+, and NPC1 binding synergistically induce conformational changes in GP2 and permit virus-liposome lipid mixing. Acidic pH and Ca2+ shifted the GP2 conformational equilibrium in favor of an intermediate state primed for NPC1 binding. Glycan cap cleavage on GP1 enabled GP2 to transition from a reversible intermediate to an irreversible conformation, suggestive of the postfusion 6-helix bundle; NPC1 binding further promoted transition to the irreversible conformation. Thus, the glycan cap of GP1 may allosterically protect against inactivation of EBOV by premature triggering of GP2
    • …
    corecore