We prove that for a wide class of quantum spin systems with isotropic
Heisenberg coupling the energy eigenvalues which belong to a total spin quantum
number S have upper and lower bounds depending at most quadratically on S. The
only assumption adopted is that the mean coupling strength of any spin w.r.t.
its neighbours is constant for all N spins. The coefficients of the bounding
parabolas are given in terms of special eigenvalues of the N times N coupling
matrix which are usually easily evaluated. In addition we show that the
bounding parabolas, if properly shifted, provide very good approximations of
the true boundaries of the spectrum. We present numerical examples of
frustrated rings, a cube, and an icosahedron.Comment: 8 pages, 3 figures. Submitted to Europhysics Letter