2,760 research outputs found

    Early hospital readmissions post‐kidney transplantation are associated with inferior clinical outcomes

    Full text link
    Unplanned hospital readmissions are common early post‐kidney transplantation. We investigated the relationship between early hospital readmissions and clinical outcomes in a single‐center retrospective study that included all adult kidney transplant patients between 2004 and 2008 with follow‐up to December 2012. The early hospital readmissions within the first 30 d were numbered and the diagnosis ascertained. Patients were grouped as none, once, and twice or more readmissions. Predictors of early readmissions were assessed, and clinical outcomes and patient and death‐censored kidney survival were compared. Among 1064 patients, 203 (19.1%) patients had once and 83 (7.8%) patients had twice or more readmissions within 30 d. Surgical complications, infections, and acute kidney injuries/acute rejection were three most common diagnoses. The length of initial hospital stay and African American race were among the variables associated significantly with readmissions. Patients with early readmissions had lower baseline renal function (p < 0.01) and more early acute rejection (p < 0.01). During follow‐up, only frequent readmissions, twice or more, within 30 d were associated with increased risk of death ( AHR 1.75, p   =   0.01) and death‐censored kidney failure ( AHR 2.20, p < 0.01). Frequent early hospital readmissions post‐transplantation identify patients at risk for poor long‐term outcomes, and more studies are needed to understand the mechanisms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106830/1/ctr12347.pd

    Contact and Friction of Nano-Asperities: Effects of Adsorbed Monolayers

    Full text link
    Molecular dynamics simulations are used to study contact between a rigid, nonadhesive, spherical tip with radius of order 30nm and a flat elastic substrate covered with a fluid monolayer of adsorbed chain molecules. Previous studies of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip constructed from discrete atoms lead to significant deviations from continuum theory and dramatic variability in friction forces. Introducing an adsorbed monolayer leads to larger deviations from continuum theory, but decreases the variations between tips with different atomic structure. Although the film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except for certain tips at high loads. Measures of the contact area based on the moments or outer limits of the pressure distribution and on counting contacting atoms are compared. The number of tip atoms making contact in a time interval grows as a power of the interval when the film is present and logarithmically with the interval for bare surfaces. Friction is measured by displacing the tip at a constant velocity or pulling the tip with a spring. Both static and kinetic friction rise linearly with load at small loads. Transitions in the state of the film lead to nonlinear behavior at large loads. The friction is less clearly correlated with contact area than load.Comment: RevTex4, 17 pages, 13 figure

    Screening of external magnetic perturbation fields due to sheared plasma flow

    Get PDF
    Within the single fluid resistive magnetohydrodynamic model, systematic toroidal modelling efforts are devoted to investigate the plasma response induced screening of the applied external 3D magnetic field perturbations in the presence of sheared toroidal flow. One particular issue of interest is addressed, when the local flow speed approaches zero at the perturbation rational surface inside the plasma. Subtle screening physics, associated with the favourable averaged toroidal curvature effect (the GGJ effect (Glasser et al 1975 Phys. Fluids 7 875)), is found to play an essential role during slow flow near the rational surface by enhancing the screening at reduced flow. A strong cancellation effect between different terms of Ohm's law is discovered, leading to different screening physics in the GGJ regime, as compared to that of conventional screening of the typical resistive-inertial regime occurring at faster flow. These modelling results may be applicable to interpret certain mode locking experiments, as well as type-I edge localized mode suppression experiments, with resonant magnetic field perturbations being applied to tokamak plasmas at low input toroidal torque

    [Colored solutions of Yang-Baxter equation from representations of U_{q}gl(2)]

    Full text link
    We study the Hopf algebra structure and the highest weight representation of a multiparameter version of Uqgl(2)U_{q}gl(2). The commutation relations as well as other Hopf algebra maps are explicitly given. We show that the multiparameter universal R{\cal R} matrix can be constructed directly as a quantum double intertwiner, without using Reshetikhin's transformation. An interesting feature automatically appears in the representation theory: it can be divided into two types, one for generic qq, the other for qq being a root of unity. When applying the representation theory to the multiparameter universal R{\cal R} matrix, the so called standard and nonstandard colored solutions R(μ,ν;μ,ν)R(\mu,\nu; {\mu}', {\nu}') of the Yang-Baxter equation is obtained.Comment: [14]pages, latex, no figure

    Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning

    Get PDF
    Aerosol mass spectrometry has proved to be a powerful tool to measure submicron particulate composition with high time resolution. Factor analysis of mass spectra (MS) collected worldwide by aerosol mass spectrometer (AMS) demonstrates that submicron organic aerosol (OA) is usually composed of several major components, such as oxygenated (OOA), hydrocarbon-like (HOA), biomass burning (BBOA), and other primary OA. In order to help interpretation of component MS from factor analysis of ambient OA datasets, AMS measurements of different primary sources is required for comparison. Such work, however, has been very scarce in the literature, especially for high resolution MS (HR-MS) measurements, which performs improved characterization by separating the ions of different elemental composition at each <i>m</i>/<i>z</i> in comparison with unit mass resolution MS (UMR-MS) measurements. In this study, primary emissions from four types of Chinese cooking (CC) and six types of biomass burning (BB) were simulated systematically and measured using an Aerodyne High-Resolution Time-of-Flight AMS (HR-ToF-AMS). The MS of the CC emissions show high similarity, with <i>m</i>/<i>z</i> 41 and <i>m</i>/<i>z</i> 55 being the highest signals; the MS of the BB emissions also show high similarity, with <i>m</i>/<i>z</i> 29 and <i>m</i>/<i>z</i> 43 being the highest signals. The MS difference between the CC and BB emissions is much bigger than that between different CC (or BB) types, especially for the HR-MS. The O/C ratio of OA ranges from 0.08 to 0.13 for the CC emissions and from 0.18 to 0.26 for the BB emissions. The UMR ions of <i>m</i>/<i>z</i> 43, <i>m</i>/<i>z</i> 44, <i>m</i>/<i>z</i> 57, and <i>m</i>/<i>z</i> 60, usually used as tracers in AMS measurements, were examined for their HR-MS characteristics in the CC and BB emissions. In addition, the MS of the CC and BB emissions are also compared with component MS from factor analysis of ambient OA datasets observed in China, as well as with other AMS measurements of primary sources in the literature. The MS signatures of cooking and biomass burning emissions revealed in this study can be used as important reference for factor analysis of ambient OA datasets, especially for the relevant studies in East Asia

    PEGylated bottom-up synthesized graphene nanoribbons loaded with camptothecin as potential drug carriers

    Get PDF
    This work discusses the potential use of bottom-up synthesized graphene nanoribbons (GNRs) as nano-carriers for drug delivery systems (DDSs). GNRs have a high loading capacity for anticancer drugs due to their high specific surface area and non-covalent adsorption with hydrophobic anticancer drug molecules. Herein, we synthesized GNRs using a bottom-up approach, modified with PEG2000 (GNR-PEG) and PEG2000 carrying folic acid chains (GNR-PEG-FA), and then loaded with camptothecin (CPT). The targeting ability mediated by folic acid of the GNR derivative was evaluated using cellular assays, and the cytotoxicity of GNR systems loaded with CPT was assessed by in vitro studies. They suggest that the functionalization of GNR derivatives with folic acid significantly affects their interaction with cells expressing different levels of folic acid receptors. The authors also explore the possibility to employ GNRs in photothermal therapy (PTT). GNR-PEG and GNR-PEG-FA display minor or no toxicity in standard cell cultures, but they show remarkable thermal response upon NIR irradiation, causing complete loss of cell viability within a few hours of treatment. This work highlights the potential of GNRs as DDSs and emphasizes the importance of further research on their biocompatibility and as a platform for PTT

    Factor Analysis and the Social Capital Index: A Study at the Brazil / Bolivia Border

    Full text link
    Objective: The study aimed to build the level of social capital by neighborhoods Guajará-Mirim border region between the State of Rondônia, Brazil and the Republic of Bolivia, which in recent years has been showing signs of social fragility due advance not virtuous practices. Method: This work made use of research in secondary bases as well as in primary bases. The tabulation of qualitative and quantitative data was performed in Excel (2010) and for their processing performance index construction purposes were calculated following the factorial analysis techniques presented by Hair et al. [19] Santana [20, 21]; and Choi [22]. For this, we made use of the statistical tool SPSS (Statistical Package for Social Sciences) for the construction of the indices of social capital. The correlation analysis process was done in Excel. results: It was observed that the capital reached regular levels in Guajará-Mirim neighborhoods not observable, so correlations between the studied parameters, however, it needs to be further studied as factors such as the flooding of the Mamore river may have interfered in any way in the implementation process of the field survey to the residents of the city. It became clear that the municipality of Guajará-Mirim suffers from serious social problems and that most problems are correlated with the increase in alcoholic beverage market in the city and use drugs. However, was not observed as the institutional arrangements are dealing with this problem, that is, as public bodies are relating to discuss actions for concrete solutions to this evil that plagues large portion of the population of Guajará-Mirim, mainly young teenagers residents of Guajá-Mamim. However, we hope to continue this work in order to better understand this mechanism of social network between the actors of this process in the region

    Quantitative nanoscale vortex-imaging using a cryogenic quantum magnetometer

    Get PDF
    Microscopic studies of superconductors and their vortices play a pivotal role in our understanding of the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray-fields enable access to fundamental aspects of superconductors such as nanoscale variations of superfluid densities or the symmetry of their order parameter. However, experimental tools, which offer quantitative, nanoscale magnetometry and operate over the large range of temperature and magnetic fields relevant to address many outstanding questions in superconductivity, are still missing. Here, we demonstrate quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBCO, using a scanning quantum sensor in form of a single Nitrogen-Vacancy (NV) electronic spin in diamond. The sensor-to-sample distance of ~10nm we achieve allows us to observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, while we find excellent quantitative agreement with Pearl's analytic model. Our experiments yield a non-invasive and unambiguous determination of the system's local London penetration depth, and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning NV magnetometry.Comment: Main text (5 pages, 4 figures) plus supplementary material (5 pages, 6 figures). Comments welcome. Further information under http://www.quantum-sensing.c
    corecore