60,756 research outputs found

    Quantising Higher-spin String Theories

    Full text link
    In this paper, we examine the conditions under which a higher-spin string theory can be quantised. The quantisability is crucially dependent on the way in which the matter currents are realised at the classical level. In particular, we construct classical realisations for the W2,sW_{2,s} algebra, which is generated by a primary spin-ss current in addition to the energy-momentum tensor, and discuss the quantisation for s8s\le8. From these examples we see that quantum BRST operators can exist even when there is no quantum generalisation of the classical W2,sW_{2,s} algebra. Moreover, we find that there can be several inequivalent ways of quantising a given classical theory, leading to different BRST operators with inequivalent cohomologies. We discuss their relation to certain minimal models. We also consider the hierarchical embeddings of string theories proposed recently by Berkovits and Vafa, and show how the already-known WW strings provide examples of this phenomenon. Attempts to find higher-spin fermionic generalisations lead us to examine the whether classical BRST operators for W2,n2W_{2,{n\over 2}} (nn odd) algebras can exist. We find that even though such fermionic algebras close up to null fields, one cannot build nilpotent BRST operators, at least of the standard form.Comment: CTP TAMU-24/94, KUL-TF-94/11, SISSA-135/94/E

    An indoor positioning approach using sibling signal patterns in enterprise WiFi infrastructure

    Get PDF
    The indoor positioning technology plays an important role in the application scenarios requiring indoor location. In this paper, the WiFi signals under modern enterprise WiFi infrastructure and signal patterns between coexisting access points (APs) are investigated. Sibling signal patterns are defined and processed to generate Beacon APs that have higher confidence for positioning. Then a positioning approach using Beacon APs is proposed and shows improved positioning accuracy. The proposed schemes are fully designed, implemented and evaluated in a real-world environment, revealing its effectiveness and efficiency

    Higher-spin strings and W minimal models

    Full text link
    We study the spectrum of physical states for higher-spin generalisations of string theory, based on two-dimensional theories with local spin-2 and spin-ss symmetries. We explore the relation of the resulting effective Virasoro string theories to certain WW minimal models. In particular, we show how the highest-weight states of the WW minimal models decompose into Virasoro primaries.Comment: 13 pages, CTP TAMU-43/93, KUL-TF-93/9

    Efficient Estimation of the Partly Linear Additive Hazards Model with Current Status Data

    Full text link
    This paper focuses on efficient estimation, optimal rates of convergence and effective algorithms in the partly linear additive hazards regression model with current status data. We use polynomial splines to estimate both cumulative baseline hazard function with monotonicity constraint and nonparametric regression functions with no such constraint. We propose a simultaneous sieve maximum likelihood estimation for regression parameters and nuisance parameters and show that the resultant estimator of regression parameter vector is asymptotically normal and achieves the semiparametric information bound. In addition, we show that rates of convergence for the estimators of nonparametric functions are optimal. We implement the proposed estimation through a backfitting algorithm on generalized linear models. We conduct simulation studies to examine the finite‐sample performance of the proposed estimation method and present an analysis of renal function recovery data for illustration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110752/1/sjos12108.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110752/2/sjos12108-sup-0001-supinfo.pd

    On the third critical field in Ginzburg-Landau theory

    Full text link
    Using recent results by the authors on the spectral asymptotics of the Neumann Laplacian with magnetic field, we give precise estimates on the critical field, HC3H_{C_3}, describing the appearance of superconductivity in superconductors of type II. Furthermore, we prove that the local and global definitions of this field coincide. Near HC3H_{C_3} only a small part, near the boundary points where the curvature is maximal, of the sample carries superconductivity. We give precise estimates on the size of this zone and decay estimates in both the normal (to the boundary) and parallel variables

    Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes

    Full text link
    To help reveal the complete picture of linear kinetic drift modes, four independent numerical approaches, based on integral equation, Euler initial value simulation, Euler matrix eigenvalue solution and Lagrangian particle simulation, respectively, are used to solve the linear gyrokinetic electrostatic drift modes equation in Z-pinch with slab simplification and in tokamak with ballooning space coordinate. We identify that these approaches can yield the same solution with the difference smaller than 1\%, and the discrepancies mainly come from the numerical convergence, which is the first detailed benchmark of four independent numerical approaches for gyrokinetic linear drift modes. Using these approaches, we find that the entropy mode and interchange mode are on the same branch in Z-pinch, and the entropy mode can have both electron and ion branches. And, at strong gradient, more than one eigenstate of the ion temperature gradient mode (ITG) can be unstable and the most unstable one can be on non-ground eigenstates. The propagation of ITGs from ion to electron diamagnetic direction at strong gradient is also observed, which implies that the propagation direction is not a decisive criterion for the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma
    corecore