58,801 research outputs found

    From Topology to Generalised Dimensional Reduction

    Get PDF
    In the usual procedure for toroidal Kaluza-Klein reduction, all the higher-dimensional fields are taken to be independent of the coordinates on the internal space. It has recently been observed that a generalisation of this procedure is possible, which gives rise to lower-dimensional ``massive'' supergravities. The generalised reduction involves allowing gauge potentials in the higher dimension to have an additional linear dependence on the toroidal coordinates. In this paper, we show that a much wider class of generalised reductions is possible, in which higher-dimensional potentials have additional terms involving differential forms on the internal manifold whose exterior derivatives yield representatives of certain of its cohomology classes. We consider various examples, including the generalised reduction of M-theory and type II strings on K3, Calabi-Yau and 7-dimensional Joyce manifolds. The resulting massive supergravities support domain-wall solutions that arise by the vertical dimensional reduction of higher-dimensional solitonic p-branes and intersecting p-branes.Comment: Latex, 24 pages, no figures, typo corrected, reference added and discussion of duality extende

    Reversible Vortex Ratchet Effects and Ordering in Superconductors with Simple Asymmetric Potential Arrays

    Full text link
    We demonstrate using computer simulations that the simplest vortex ratchet system for type-II superconductors with artificial pinning arrays, an asymmetric one-dimensional (1D) potential array, exhibits the same features as more complicated two-dimensional vortex ratchets that have been studied in recent experiments. We show that the 1D geometry, originally proposed by Lee et al. [Nature 400, 337 (1999)], undergoes multiple reversals in the sign of the ratchet effect as a function of vortex density, substrate strength, and ac drive amplitude, and that the sign of the ratchet effect is related to the type of vortex lattice structure present. When the vortex lattice is highly ordered, an ordinary vortex ratchet effect occurs which is similar to the response of an isolated particle in the same ratchet geometry. In regimes where the vortices form a smectic or disordered phase, the vortex-vortex interactions are relevant and we show with force balance arguments that the ratchet effect can reverse in sign. The dc response of this system features a reversible diode effect and a variety of vortex states including triangular, smectic, disordered and square.Comment: 10 pages, 12 postscript figures. Version to appear in Phys. Rev.

    Time-Domain Measurement of Spontaneous Vibrational Decay of Magnetically Trapped NH

    Get PDF
    The v = 1 -> 0 radiative lifetime of NH (X triplet-Sigma-, v=1,N=0) is determined to be tau_rad,exp. = 37.0 +/- 0.5 stat +2.0 / -0.8 sys miliseconds, corresponding to a transition dipole moment of |mu_10| = 0.0540 + 0.0009 / -0.0018 Debye. To achieve the long observation times necessary for direct time-domain measurement, vibrationally excited NH (X triplet-Sigma-, v=1,N=0) radicals are magnetically trapped using helium buffer-gas loading. Simultaneous trapping and lifetime measurement of both the NH(v=1, N=0) and NH(v=0,N=0) populations allows for accurate extraction of tau_rad,exp. Background helium atoms are present during our measurement of tau_rad,exp., and the rate constant for helium atom induced collisional quenching of NH(v=1,N=0) was determined to be k_q < 3.9 * 10^-15 cm^3/s. This bound on k_q yields the quoted systematic uncertainty on tau_rad,exp. Using an ab initio dipole moment function and an RKR potential, we also determine a theoretical value of 36.99 ms for this lifetime, in agreement with our experimental value. Our results provide an independent determination of tau_rad,10, test molecular theory, and furthermore demonstrate the efficacy of buffer-gas loading and trapping in determining metastable radiative and collisional lifetimes.Comment: 10 pages + 3 figures (11 pages total) v2 has minor corrections and explanations accepted for publication in PR

    Finite-temperature effects on the number fluctuation of ultracold atoms across the Superfluid to Mott-insulator transition

    Full text link
    We study the thermodynamics of ultracold Bose atoms in optical lattices by numerically diagonalizing the mean-field Hamiltonian of the Bose-Hubbard model. This method well describes the behavior of long-range correlations and therefore is valid deep in the superfluid phase. For the homogeneous Bose-Hubbard model, we draw the finite-temperature phase diagram and calculate the superfluid density at unity filling. We evaluate the finite-temperature effects in a recent experiment probing number fluctuation [Phys. Rev. Lett. \textbf{96}, 090401 (2006)], and find that our finite-temperature curves give a better fitting to the experimental data, implying non-negligible temperature effects in this experiment.Comment: 7 pages,7 figures, final version for publicatio

    Magnetic trapping and Zeeman relaxation of imidogen (NH X-triplet-Sigma)

    Full text link
    Imidogen (NH) radicals are magnetically trapped and their Zeeman relaxation and energy transport collision cross sections with helium are measured. Continuous buffer-gas loading of the trap is direct from a room-temperature molecular beam. The Zeeman relaxation (inelastic) cross section of magnetically trapped electronic, vibrational and rotational ground state imidogen in collisions with He-3 is measured to be 3.8 +/- 1.1 E-19 cm^2 at 710 mK. The NH-He energy transport cross section is also measured, indicating a ratio of diffusive to inelastic cross sections of gamma = 7 E4 in agreement with the recent theory of Krems et al. (PRA 68 051401(R) (2003))Comment: 12 pages, 3 figure

    The Resonant Exchange Qubit

    Full text link
    We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two-axis control at a detuning sweet-spot, where leakage due to hyperfine coupling is suppressed by the large exchange gap. A {\pi}/2-gate time of 2.5 ns and a coherence time of 19 {\mu}s, using multi-pulse echo, are also demonstrated. Model calculations that include effects of hyperfine noise are in excellent quantitative agreement with experiment

    Spectroscopy of a narrow-line laser cooling transition in atomic dysprosium

    Full text link
    The laser cooling and trapping of ultracold neutral dysprosium has been recently demonstrated using the broad, open 421-nm cycling transition. Narrow-line magneto-optical trapping of Dy on longer wavelength transitions would enable the preparation of ultracold Dy samples suitable for loading optical dipole traps and subsequent evaporative cooling. We have identified the closed 741-nm cycling transition as a candidate for the narrow-line cooling of Dy. We present experimental data on the isotope shifts, the hyperfine constants A and B, and the decay rate of the 741-nm transition. In addition, we report a measurement of the 421-nm transition's linewidth, which agrees with previous measurements. We summarize the laser cooling characteristics of these transitions as well as other narrow cycling transitions that may prove useful for cooling Dy.Comment: 6+ pages, 5 figures, 5 table

    Euclidean-signature Supergravities, Dualities and Instantons

    Get PDF
    We study the Euclidean-signature supergravities that arise by compactifying D=11 supergravity or type IIB supergravity on a torus that includes the time direction. We show that the usual T-duality relation between type IIA and type IIB supergravities compactified on a spatial circle no longer holds if the reduction is performed on the time direction. Thus there are two inequivalent Euclidean-signature nine-dimensional maximal supergravities. They become equivalent upon further spatial compactification to D=8. We also show that duality symmetries of Euclidean-signature supergravities allow the harmonic functions of any single-charge or multi-charge instanton to be rescaled and shifted by constant factors. Combined with the usual diagonal dimensional reduction and oxidation procedures, this allows us to use the duality symmetries to map any single-charge or multi-charge p-brane soliton, or any intersection, into its near-horizon regime. Similar transformations can also be made on non-extremal p-branes. We also study the structures of duality multiplets of instanton and (D-3)-brane solutions.Comment: Latex, 50 pages, typos corrected and references adde
    • …
    corecore