9 research outputs found

    Modelos matemáticos na nutrição de ruminantes

    Get PDF
    Modelos matemáticos podem ser utilizados para melhorar a performance, reduzir os custos de produção, e minimizar a exceção de nutrientes através de melhores estimativas da exigência e utilização de alimentos em vários cenários produtivos. Modelos matemáticos podem ser classificados em cinco ou mais categorias dependendo da sua natureza. Um dos maiores problemas na construção de modelos matemáticos é o nível de agregação das equações. Os passos mais importantes são o estabelecimento do propósito do modelo, determinação da melhor combinação de equações empíricas e teóricas para representar das funções fisiológicas dado a disponibilidade de banco de dados, informações tipicamente encontradas a nível de campo, e os benefícios e riscos associados com o uso do modelo na produção animal. Nesse artigo são discutidos cinco sistemas de alimentação padrão de ruminantes mais utilizados atualmente. Eles compartilham de conceitos de exigência e disponibilidade de energia e nutrientes, mas diferem na estrutura e como esses conceitos são abordados. Modelos animais podem ser utilizados para vários propósitos, entre eles uma simples descrição de observações, estimativa de respostas à diferentes manejos, e caracterização de mecanismos biológicos. Dependendo dos objetivos, várias alternativas podem ser utilizadas na construção do modelo matemático, entre elas, equações algébricas simples, equações de relação puramente estatísticas, ou até modelos mecanicistas e dinâmicos. Esse último favorece o uso da quantidade crescente de informações cientificas relacionadas à biologia animal. O desenvolvimento contínuo desses tipos de modelos juntamente com as inovações computacionais e de softwares permitem avanços na forma de uso dos conhecimentos fundamentais de nutrição animal de forma que a produção animal possa ser melhor explorada ao mesmo tempo reduzindo-se o impacto ambiental.Mathematical models can be used to improve performance, reduce cost of production, and reduce nutrient excretion by accounting for more of the variation in predicting requirements and feed utilization in each unique production situation. Mathematical models can be classified into five or more categories based on their nature and behavior. Determining the appropriate level of aggregation of equations is a major problem in formulating models. The most critical step is to describe the purpose of the model and then to determine the appropriate mix of empirical and mechanistic representations of physiological functions, given development and evaluation dataset availability, inputs typically available and the benefits versus the risks of use associated with increased sensitivity. We discussed five major feeding systems used around the world. They share common concepts of energy and nutrient requirement and supply by feeds, but differ in structure and application of the concepts. Animal models are used for a variety of purposes, including the simple description of observations, prediction of responses to management, and explanation of biological mechanisms. Depending upon the objectives, a number of different approaches may be used, including classical algebraic equations, predictive empirical relationships, and dynamic, mechanistic models. The latter offer the best opportunity to make full use of the growing body of knowledge regarding animal biology. Continuing development of these types of models and computer technology and software for their implementation holds great promise for improvements in the effectiveness with which fundamental knowledge of animal function can be applied to improve animal agriculture and reduce its impact on the environment

    Dynamic modeling and metaheuristic optimization for decision support in beef cattle production

    No full text
    O planejamento da atividade de engorda confinada de bovinos de corte inclui decisões complexas tais como o número de animais a confinar, quando iniciar o confinamento, qual o peso do animal no início do confinamento, formulação e balanceamento da ração e melhor data de venda dos animais. Para melhor avaliar a combinação desses fatores, um modelo matemático dinâmico de crescimento de bovinos de corte baseado em conceitos de crescimento hiperplásico e hipertrófico foi desenvolvido contendo DNA, massa de proteína, massa de gordura e reserva de energia lábil como variáveis de estado. O modelo foi expresso através de equações diferenciais e integrado utilizando o método numérico de Runge-Kutta de quarta ordem foi construído para simular o crescimento de bovinos. A ingestão de matéria seca foi calculada com base nos potenciais de deposição de gordura e proteína. O potencial de deposição de proteína foi calculado em função das quantidades de DNA e proteína corporal. O potencial de deposição de gordura foi calculado em de deposição de gordura foi calculado em função de condição corporal do animal. Resultados de simulações mostram que os utilizados capacitaram a simulação de taxas decrescentes de ganho com a maturidade do animal e aumento das taxas de ganho e ingestão após o período de restrição alimentar. A intensidade e duração do ganho compensatório foram afetados pela intensidade e duração da restrição. O modelo mostrou desejável tendência a um equilíbrio em composição e condição corporal. O nível de equilíbrio dependendo do peso do animal e densidade energética da dieta. Simulações com o modelo de crescimento foram utilizadas para determinar o ponto ótimo de abate dos animais. A composição da dieta foi otimizada isoladamente utilizando-se programação linear. Utilizou-se simultaneamente simulação dinâmica, programação linear e um algoritmo genético para determinar soluções para um problema abrangente de otimização de confinamento de bovinos de corte, incluindo o número de animais a confinar, data para o início do confinamento, peso inicial dos animais a serem confinados, composição da dieta e data de venda sujeitos a restrição de capital e quantidade de forragem. Os resultados das simulações e otimizações mostraram que o peso de abate e a extensão do período de confinamento foram afetados pelo custo da dieta, de forma que as dietas mais caras demandaram confinamentos mais curtos e pesos de abate mais baixos. Dietas de custo mínimo de produção não produziram necessariamente máximo retorno econômico em condições de estacionalidade de preços pagos pelos animais. Épocas de compra e venda constituíram-se em um dos mais importantes aspectos para atingir o máximo retorno econômico. Quando restrição na quantidade de forragem foi imposta as estratégias ótimas incluíram maiores pesos dos animais adquiridos, compra tardia, menores períodos de confinamento e maior densidade energética na dieta, porém a data de abate foi mantida. O uso simultâneo de programação linear para otimização de dietas, simulação dinâmica e um algoritmo genético gerou soluções robustas para o problema genérico de otimização de confinamento considerado.Strategic decisions to increase the profitability in feedlot operations such as number of animals, initial body weight, commence and end of the feeding period, and diet composition are required. ln order to better evaluate strategies combining those factors, a dynamic mathematical model of beef cattle growth was developed. The model is based on concepts of hyperplasia and hypertrophy. State variables are protein mass, DNA mass, fat mass and labile metabolizable energy reserve pool. The labile energy pool worked as a buffer between energy intake and energy use and modulated both rates. Dry Matter and Energy intake were calculated interactively and were function of animal energy demand that was calculated base on potential rates of protein and fat accretion. Fat accretion potential was modified by body fatness. Simulation /, results showed that the model enabled simulating decreasing growth rates with advance of animal maturity and increased intake and growth rates after restriction periods. lntensity and duration of compensatory growth were affected by intensity and duration intensity of restriction. Simulations with the growth model were used to determine the optimal slaughter date of the animals. Ration composition was optimized using linear programming and dynamic simulations, linear programming and a genetic algorithm running concurrently was used to determine solutions of an extensive optimization problem subject to constraints of capital and feed availability. Analyses of the simulations and optimizations results indicated that both the body weight at slaughter and the extension of the feedlot period were affect by the cost of the ration. Increasing the feed costs lowered the slaughter weights and shortened the feeding periods. Diets with the lowest production cost did not produce the maximum economical return given the conditions of beef prices. The date of purchase and sale were one of the most important aspects in reaching maximum economical return. When forage limitation was included in the problem the solutions tended to have later purchase, heavier animals shorter feeding period, and higher energy density in the diet. Slaughter date was however unchanged. The combination of a genetic algorithm, linear programming to diet optimization and dynamic simulation was able to generate robust solutions to the general feedlot problem

    Dynamic modeling and metaheuristic optimization for decision support in beef cattle production

    No full text
    O planejamento da atividade de engorda confinada de bovinos de corte inclui decisões complexas tais como o número de animais a confinar, quando iniciar o confinamento, qual o peso do animal no início do confinamento, formulação e balanceamento da ração e melhor data de venda dos animais. Para melhor avaliar a combinação desses fatores, um modelo matemático dinâmico de crescimento de bovinos de corte baseado em conceitos de crescimento hiperplásico e hipertrófico foi desenvolvido contendo DNA, massa de proteína, massa de gordura e reserva de energia lábil como variáveis de estado. O modelo foi expresso através de equações diferenciais e integrado utilizando o método numérico de Runge-Kutta de quarta ordem foi construído para simular o crescimento de bovinos. A ingestão de matéria seca foi calculada com base nos potenciais de deposição de gordura e proteína. O potencial de deposição de proteína foi calculado em função das quantidades de DNA e proteína corporal. O potencial de deposição de gordura foi calculado em de deposição de gordura foi calculado em função de condição corporal do animal. Resultados de simulações mostram que os utilizados capacitaram a simulação de taxas decrescentes de ganho com a maturidade do animal e aumento das taxas de ganho e ingestão após o período de restrição alimentar. A intensidade e duração do ganho compensatório foram afetados pela intensidade e duração da restrição. O modelo mostrou desejável tendência a um equilíbrio em composição e condição corporal. O nível de equilíbrio dependendo do peso do animal e densidade energética da dieta. Simulações com o modelo de crescimento foram utilizadas para determinar o ponto ótimo de abate dos animais. A composição da dieta foi otimizada isoladamente utilizando-se programação linear. Utilizou-se simultaneamente simulação dinâmica, programação linear e um algoritmo genético para determinar soluções para um problema abrangente de otimização de confinamento de bovinos de corte, incluindo o número de animais a confinar, data para o início do confinamento, peso inicial dos animais a serem confinados, composição da dieta e data de venda sujeitos a restrição de capital e quantidade de forragem. Os resultados das simulações e otimizações mostraram que o peso de abate e a extensão do período de confinamento foram afetados pelo custo da dieta, de forma que as dietas mais caras demandaram confinamentos mais curtos e pesos de abate mais baixos. Dietas de custo mínimo de produção não produziram necessariamente máximo retorno econômico em condições de estacionalidade de preços pagos pelos animais. Épocas de compra e venda constituíram-se em um dos mais importantes aspectos para atingir o máximo retorno econômico. Quando restrição na quantidade de forragem foi imposta as estratégias ótimas incluíram maiores pesos dos animais adquiridos, compra tardia, menores períodos de confinamento e maior densidade energética na dieta, porém a data de abate foi mantida. O uso simultâneo de programação linear para otimização de dietas, simulação dinâmica e um algoritmo genético gerou soluções robustas para o problema genérico de otimização de confinamento considerado.Strategic decisions to increase the profitability in feedlot operations such as number of animals, initial body weight, commence and end of the feeding period, and diet composition are required. ln order to better evaluate strategies combining those factors, a dynamic mathematical model of beef cattle growth was developed. The model is based on concepts of hyperplasia and hypertrophy. State variables are protein mass, DNA mass, fat mass and labile metabolizable energy reserve pool. The labile energy pool worked as a buffer between energy intake and energy use and modulated both rates. Dry Matter and Energy intake were calculated interactively and were function of animal energy demand that was calculated base on potential rates of protein and fat accretion. Fat accretion potential was modified by body fatness. Simulation /, results showed that the model enabled simulating decreasing growth rates with advance of animal maturity and increased intake and growth rates after restriction periods. lntensity and duration of compensatory growth were affected by intensity and duration intensity of restriction. Simulations with the growth model were used to determine the optimal slaughter date of the animals. Ration composition was optimized using linear programming and dynamic simulations, linear programming and a genetic algorithm running concurrently was used to determine solutions of an extensive optimization problem subject to constraints of capital and feed availability. Analyses of the simulations and optimizations results indicated that both the body weight at slaughter and the extension of the feedlot period were affect by the cost of the ration. Increasing the feed costs lowered the slaughter weights and shortened the feeding periods. Diets with the lowest production cost did not produce the maximum economical return given the conditions of beef prices. The date of purchase and sale were one of the most important aspects in reaching maximum economical return. When forage limitation was included in the problem the solutions tended to have later purchase, heavier animals shorter feeding period, and higher energy density in the diet. Slaughter date was however unchanged. The combination of a genetic algorithm, linear programming to diet optimization and dynamic simulation was able to generate robust solutions to the general feedlot problem

    Mathematical models in ruminant nutrition Modelos matemáticos na nutrição de ruminantes

    No full text
    Mathematical models can be used to improve performance, reduce cost of production, and reduce nutrient excretion by accounting for more of the variation in predicting requirements and feed utilization in each unique production situation. Mathematical models can be classified into five or more categories based on their nature and behavior. Determining the appropriate level of aggregation of equations is a major problem in formulating models. The most critical step is to describe the purpose of the model and then to determine the appropriate mix of empirical and mechanistic representations of physiological functions, given development and evaluation dataset availability, inputs typically available and the benefits versus the risks of use associated with increased sensitivity. We discussed five major feeding systems used around the world. They share common concepts of energy and nutrient requirement and supply by feeds, but differ in structure and application of the concepts. Animal models are used for a variety of purposes, including the simple description of observations, prediction of responses to management, and explanation of biological mechanisms. Depending upon the objectives, a number of different approaches may be used, including classical algebraic equations, predictive empirical relationships, and dynamic, mechanistic models. The latter offer the best opportunity to make full use of the growing body of knowledge regarding animal biology. Continuing development of these types of models and computer technology and software for their implementation holds great promise for improvements in the effectiveness with which fundamental knowledge of animal function can be applied to improve animal agriculture and reduce its impact on the environment.Modelos matemáticos podem ser utilizados para melhorar a performance, reduzir os custos de produção, e minimizar a exceção de nutrientes através de melhores estimativas da exigência e utilização de alimentos em vários cenários produtivos. Modelos matemáticos podem ser classificados em cinco ou mais categorias dependendo da sua natureza. Um dos maiores problemas na construção de modelos matemáticos é o nível de agregação das equações. Os passos mais importantes são o estabelecimento do propósito do modelo, determinação da melhor combinação de equações empíricas e teóricas para representar das funções fisiológicas dado a disponibilidade de banco de dados, informações tipicamente encontradas a nível de campo, e os benefícios e riscos associados com o uso do modelo na produção animal. Nesse artigo são discutidos cinco sistemas de alimentação padrão de ruminantes mais utilizados atualmente. Eles compartilham de conceitos de exigência e disponibilidade de energia e nutrientes, mas diferem na estrutura e como esses conceitos são abordados. Modelos animais podem ser utilizados para vários propósitos, entre eles uma simples descrição de observações, estimativa de respostas à diferentes manejos, e caracterização de mecanismos biológicos. Dependendo dos objetivos, várias alternativas podem ser utilizadas na construção do modelo matemático, entre elas, equações algébricas simples, equações de relação puramente estatísticas, ou até modelos mecanicistas e dinâmicos. Esse último favorece o uso da quantidade crescente de informações cientificas relacionadas à biologia animal. O desenvolvimento contínuo desses tipos de modelos juntamente com as inovações computacionais e de softwares permitem avanços na forma de uso dos conhecimentos fundamentais de nutrição animal de forma que a produção animal possa ser melhor explorada ao mesmo tempo reduzindo-se o impacto ambiental

    Simulation and economic analysis of bovine sex selection

    No full text
    A simulation model implemented in the programming software Delphi XE® was applied to evaluate sex selection in bovine. The hypothesis under investigation was that a dynamic model with stochastic and deterministic elements could detect the sexed semen technique to minimize pregnancy cost and to determine the adequate number of recipients required for in vivo (ET) and in vitro embryo production (IVP) in the proposed scenarios. Sex selection was compared through semen sexed using flow cytometry (C1) and density gradient centrifugation techniques (C2) in ET and IVP. Sensibility analyses were used to identify the adequate number of recipients for each scenario. This number was reinserted into the model to determine the biological and financial values that maximized ET and IVP using sexed semen (C1M and C2M). New scenarios showed that the density gradient technique minimized pregnancy cost based on the proposed scenarios. In addition, the adequate number of recipients (ET - C1M - 115 and C2M - 105)/(IVP - C1M - 145 and C2M - 140) per donor used was determined to minimize the pregnancy cost in all scenarios

    Implementation and calibration of short-rotation eucalypt plantation module within the ECOSMOS land surface model

    No full text
    International audienceEucalypt is one of the most-planted broadleaf genera around the globe, exhibiting high yield, plasticity and growing capacity on a broad range of environments. The main objective of this study is to present the integration of a specific module for eucalypt short-rotation plantations into ECOSMOS (Ecosystem Model Simulator). Different calibrations and validations, from intensively monitored sites, experimental networks, and plots in commercial stands were performed. We calibrated all ECOSMOS model biophysical and physiological parameters for the Eucalyptus module using three micrometeorological experiments. A generic genotype was calibrated and applied to evaluate the model performance in response to contrasting environments and genotypes, on a dataset from an experimental network with high Genotype x Environment interactions. The model was applied over commercial eucalypt plantations sites, where re-calibration was necessary for four parameters of the ECOSMOSEucalyptus module related to leaf carbon allocation and specific leaf area, because of significant differences in genotypes and management among datasets. Results showed the consistency of the biophysical and physiological processes solved by the model, simulated energy and carbon fluxes, soil water dynamics, and growth of different plant components when compared with observations; Nash-Sutcliffe efficiency (NSE) of 0.93, 0.43 and 0.27 for net radiation, net ecosystem exchange and evapotranspiration, respectively were obtained for the validation dataset. The generic genotype calibration varied greatly in simulating the eucalypt stem growth of the 26 locations. The generic calibration can be used as reference for eucalypt plantation' areas in Brazil; however, a re calibration is recommended for operational applications to adjust the ECOSMOS-Eucalyptus module to the management conditions, management practices and genotypes used by companies

    Parametrization of the Davis Growth Model using data of crossbred Zebu cattle

    Get PDF
    ABSTRACT: The system of differential equations proposed by Oltjen et al. [1986, named Davis Growth Model (DGM)] to represent cattle growth has been parameterized with data from Bos taurus (British) and Bos indicus (Nellore) breeds. The DGM has been successfully used for simulation and decision support in the United States. However, the effect of about 30 years of genetic improvement and the use of different breeds may affect the model parameter values, which also may need to be re-estimated for crossbred animals. The aim of this study was to estimate parameter values and confidence intervals for the DGM with growth and body composition data from Zebu crossbred animals. Confidence intervals and asymptotic distribution were generated through nonparametric bootstrap with data from a field experiment conducted in Brazil. The parameters showed normal probability distribution for most scenarios. The rate constant for deoxyribonucleic acid (DNA) synthesis had a minimum increase of 156 % and the maximum of 389 %, compared to the original values and the maintenance requirement had a minimum increase of 126 % and maximum of 160 % compared to the original values. Lower limits of 95 % confidence intervals for the parameters related to maintenance and protein accretion rates were higher than the original estimates of the DGM, evidencing genetic differences of the Zebu crossbred animals in relation to the original DGM parameters

    Parametrization of the Davis Growth Model using data of crossbred Zebu cattle

    No full text
    ABSTRACT: The system of differential equations proposed by Oltjen et al. [1986, named Davis Growth Model (DGM)] to represent cattle growth has been parameterized with data from Bos taurus (British) and Bos indicus (Nellore) breeds. The DGM has been successfully used for simulation and decision support in the United States. However, the effect of about 30 years of genetic improvement and the use of different breeds may affect the model parameter values, which also may need to be re-estimated for crossbred animals. The aim of this study was to estimate parameter values and confidence intervals for the DGM with growth and body composition data from Zebu crossbred animals. Confidence intervals and asymptotic distribution were generated through nonparametric bootstrap with data from a field experiment conducted in Brazil. The parameters showed normal probability distribution for most scenarios. The rate constant for deoxyribonucleic acid (DNA) synthesis had a minimum increase of 156 % and the maximum of 389 %, compared to the original values and the maintenance requirement had a minimum increase of 126 % and maximum of 160 % compared to the original values. Lower limits of 95 % confidence intervals for the parameters related to maintenance and protein accretion rates were higher than the original estimates of the DGM, evidencing genetic differences of the Zebu crossbred animals in relation to the original DGM parameters
    corecore