200 research outputs found

    Relationship between Extraversion and Employees’ Innovative Behavior and Moderating Effect of Organizational Innovative Climate

    Get PDF
    This paper aims to clarify the relationship between extraversion and employees’ innovative and disclose the moderating effect of organizational innovative climate on that relationship. To this end, 300 employees were selected from various enterprises in three Chinese cities, and subjected to a questionnaire survey based on the five factor model (FFM) and 5-point Likert scale. Through statistical regressions, the author explored the effects of extraversion and organizational innovative climate have on employees’ innovative behavior. Then, the organizational innovative climate was divided into five dimensions, and the feature activation theory was implemented to reveal the moderating effect of each dimension on relationship between extraversion and employees’ innovation. Through the above analysis, it is concluded that extraversion has a positive effect on employees’ innovative behavior; the five dimensions of organizational innovative climate all exert a positive effect on employees’ innovative behavior; the resource support in organizational innovative climate has a moderating effect on the relationship between extraversion and employees’ innovation. The research findings shed new light on the improvement of organizational innovative and the construction of an innovative country

    Regulations and brain drain: Evidence from Wall Street star analysts’ career choices

    Get PDF

    Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global climatic oscillations, glaciation cycles and the unique geographic topology of China have profoundly influenced species population distributions. In most species, contemporary distributions of populations cannot be fully understood, except in a historical context. Complex patterns of Pleistocene glaciations, as well as other physiographic changes have influenced the distribution of bat species in China. Until this study, there had been no phylogeographical research on <it>Myotis davidii</it>, an endemic Chinese bat. We used a combination of nuclear and mitochondrial DNA markers to investigate genetic diversity, population structure, and the demographic history of <it>M. davidii</it>. In particular, we compared patterns of genetic variation to glacial oscillations, topography, and environmental variation during the Pleistocene in an effort to explain current distributions in light of these historical processes.</p> <p>Results</p> <p><it>M. davidii </it>comprises three lineages (MEP, SWP and SH) based on the results of molecular variance analysis (AMOVA) and phylogenetic analyses. The results of a STRUCTURE analysis reveal multi-hierarchical population structure in <it>M. davidii</it>. Nuclear and mitochondrial genetic markers reveal different levels of gene flow among populations. In the case of mtDNA, populations adhere to an isolation-by-distance model, whereas the individual assignment test reveals considerable gene flow between populations. MDIV analysis indicate that the split of the MEP and SWP/SH lineages, and from the SWP and SH lineages were at 201 ka BP and 158 ka BP, respectively. The results of a mismatch distribution analysis and neutrality tests indicate a population expansion event at 79.17 ka BP and 69.12 ka BP in MEP and SWP, respectively.</p> <p>Conclusions</p> <p>The complex demographic history, discontinuous extant distribution of haplotypes, and multiple-hierarchy population structure of <it>M. davidii </it>appear associated with climatic oscillations, topography and eco-environmental variation of China. Additionally, the three regions are genetically differentiated from one another in the entire sample set. The degree of genetic differentiation, based on the analysis of mtDNA and nDNA, suggests a male-mediated gene flow among populations. Refuges were in the MEP, SH and the lower elevations of SWP regions. This study also provides insights for conservation management units (MEP, SWP and SH).</p

    Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2.

    Get PDF
    Hepatocellular carcinoma (HCC) has emerged as one of the most common malignancies worldwide. It is associated with a high mortality rate, as evident from its increasing incidence and extremely poor prognosis. The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) has been reported to act as an oncogene in several human cancers. The present study aimed to reveal the functional significance of PSMD14 in HCC progression and the underlying mechanisms. We found that PSMD14 was significantly upregulated in HCC tissues. Overexpression of PSMD14 correlated with vascular invasion, tumor number, tumor recurrence, and poor tumor-free and overall survival of patients with HCC. Knockdown and overexpression experiments demonstrated that PSMD14 promoted proliferation, migration, and invasion in HCC cells in vitro, and facilitated tumor growth and metastasis in vivo. Mechanistically, we identified PSMD14 as a novel post-translational regulator of GRB2. PSMD14 inhibits degradation of GRB2 via deubiquitinating this oncoprotein in HCC cells. Furthermore, pharmacological inhibition of PSMD14 with O-phenanthroline (OPA) suppressed the malignant behavior of HCC cells in vitro and in vivo. In conclusion, our findings suggest that PSMD14 could serve as a novel promising therapeutic candidate for HCC

    Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2

    Get PDF
    Abstract(#br)Hepatocellular carcinoma (HCC) has emerged as one of the most common malignancies worldwide. It is associated with a high mortality rate, as evident from its increasing incidence and extremely poor prognosis. The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) has been reported to act as an oncogene in several human cancers. The present study aimed to reveal the functional significance of PSMD14 in HCC progression and the underlying mechanisms. We found that PSMD14 was significantly upregulated in HCC tissues. Overexpression of PSMD14 correlated with vascular invasion, tumor number, tumor recurrence, and poor tumor-free and overall survival of patients with HCC. Knockdown and overexpression experiments demonstrated that PSMD14 promoted proliferation, migration, and invasion in HCC cells in vitro , and facilitated tumor growth and metastasis in vivo . Mechanistically, we identified PSMD14 as a novel post-translational regulator of GRB2. PSMD14 inhibits degradation of GRB2 via deubiquitinating this oncoprotein in HCC cells. Furthermore, pharmacological inhibition of PSMD14 with O-phenanthroline (OPA) suppressed the malignant behavior of HCC cells in vitro and in vivo . In conclusion, our findings suggest that PSMD14 could serve as a novel promising therapeutic candidate for HCC
    • …
    corecore