819 research outputs found

    Mesoscovic magnetic/semiconductor heterostructures

    Get PDF
    We report the experimental results of Fe and Fe3O4 nanostructures on GaAs(100) surfaces and hybrid Ferromagnetic/Semiconductor/Ferromagnetic (FM/SC/FM) spintronic devices. Element specific x-ray magnetic circular dichroism (XMCD) measurements have shown directly that Fe atoms on the GaAs(100)-4 x 6 surface are ferromagnetic. Within coverages of 2.5 to 4.8 ML superparamagnetic nanoclusters are formed and exhibiting strong uniaxial anisotropy, of the order of 6.0 x 10(5) erg/cm(3). The coercivities of epitaxial Fe dot arrays films grown on GaAs(100) were observed to be dependent on the separation and size of the dots indicating that interdot dipolar coupling affects the magnetization processes in these dots. In addition Fe3O4 films grown on deformed GaAs(100) substrates have been observed to form nanostripes following the topography of the substrate and magneto-optical Kerr effect (MOKE) measurements showed that these nanostripes have uniaxial magnetic anisotropy with easy axis perpendicular to the length of the nanostripes. Meanwhile the FM/SC/FM vertical device has exhibited a biasing current dependent on MR characteristics, with a maximum change of 12% in the MR observed, indicating for the first time a large room temperature spin injection and detection

    Static Experimental Study on Flame Retardant and Explosion Suppression Performances of Fire Resistant Diesel Fuel

    Get PDF
    AbstractTo assess the flame retardant and explosion suppression performances of fire resistant diesel fuel, static experiments with ordinary diesel fuel (Diesel fuel 1, D1 for short) and fire resistant diesel fuel (Diesel fuel 2, D2 for short) detonated by explosives were performed in this study. The explosion process and surface temperature of the fireballs were recorded using a high-speed camera and an infrared thermal imager. Meanwhile, the overpressures of the explosion shock waves of the two diesels were also recorded using pressure sensors embedded in the ground. The experimental results show that the diesel fuels are dispersed and ignited to produce explosion fireball when explosive is detonated in fuel tank. At the same time, part of diesel fuel produces pool fire on the ground. The pool fire of D1 lasts about 3000ms, while D2 lasting only about 700ms. The maximum temperature and the duration of high temperature of D1 explosion fireball are 1558.8°C and 1392ms respectively, which are 1.11 and 1.29 times those of D2. In the position of 2 m far from the vertical projection point of the explosion center, the overpressure of the explosion shock wave of D1 is 53.30kPa, while that of D2 is 31.60kPa. Moreover, the overpressures of D1 are also higher in the other location of the pressure area. Therefore, it is proved that the explosive power of D2 is significantly lower than that of D1, and the flame retardant and explosion suppression performances of D2 is better than those of D1

    OrdinalFix: Fixing Compilation Errors via Shortest-Path CFL Reachability

    Full text link
    The development of correct and efficient software can be hindered by compilation errors, which must be fixed to ensure the code's syntactic correctness and program language constraints. Neural network-based approaches have been used to tackle this problem, but they lack guarantees of output correctness and can require an unlimited number of modifications. Fixing compilation errors within a given number of modifications is a challenging task. We demonstrate that finding the minimum number of modifications to fix a compilation error is NP-hard. To address compilation error fixing problem, we propose OrdinalFix, a complete algorithm based on shortest-path CFL (context-free language) reachability with attribute checking that is guaranteed to output a program with the minimum number of modifications required. Specifically, OrdinalFix searches possible fixes from the smallest to the largest number of modifications. By incorporating merged attribute checking to enhance efficiency, the time complexity of OrdinalFix is acceptable for application. We evaluate OrdinalFix on two datasets and demonstrate its ability to fix compilation errors within reasonable time limit. Comparing with existing approaches, OrdinalFix achieves a success rate of 83.5%, surpassing all existing approaches (71.7%).Comment: Accepted by ASE 202

    Superluminal Behaviors of Modified Bessel Waves

    Full text link
    Much experimental evidence of superluminal phenomena has been available by electromagnetic wave propagation experiments, with the results showing that the phase time do describe the barrier traversal time. Based on the extrapolated phase time approach and numerical methods, we show that, in contrary to the ordinary Bessel waves of real argument, the group velocities of modified Bessel waves are superluminal, and obtain the following results: 1) the group velocities increase with the increase of propagation distance, which is similar to the evanescent plane-wave cases; 2) for large wave numbers, the group velocities fall off as the wave numbers increase, which is similar to the evanescent plane-wave cases; 3) for small wave numbers, the group velocities increase with the increase of wave numbers, this is different from the evanescent plane-wave cases.Comment: 4 pages, 2 figure

    Clinical relevance of miR-423-5p levels in chronic obstructive pulmonary disease patients

    Get PDF
    Objective: This study aimed to examine changes in miRNAs expression profile of COPD patients. Methods: Thirty-six COPD patients as well as thirty-three healthy volunteers were recruited. Total RNAs were collected from the plasma of each participant. The differentially expressed miRNAs in COPD were screened from the GEO database. RT-qPCR was carried out to detect miRNA expression. Results: In total, 9 out of 55 miRNAs were expressed differentially in COPD patients. Confirmed by RT-qPCR validation, 6 miRNAs increased while 3 miRNAs decreased. Further analysis of miR-423-5p, which has not been reported in COPD, showed that AUC for the diagnosis of COPD was 0.9651, and miR-423-5p levels was inversely correlated with the duration of smoking. Conclusion: The present study demonstrates that miR-423-5p is a potential marker for identifying COPD patients

    Electrochemical Reducation of TiO2/Al2O3/C to Ti3AlC2 and Its Derived Two-Dimensional (2D) Carbides

    Get PDF
    Ti3AlC2 has been directly synthesized from TiO2/Al2O3/C mixture precursors (3TiO2/0.5Al2O3/1.5C and 2TiO2/0.5Al2O3/C) by a molten salt electrolysis process at 900?C and 3.2 V in molten CaCl2. The influence of initial carbon content on the electrosynthesized products has been investigated. The result shows that the main phase of the electrosynthesized products changes from Ti3AlC to Ti2AlC and then to Ti3AlC2 with the increasing carbon content, and the electrosynthesized Ti3AlC2 is carbon deficient. The morphology observation shows that the electrosynthesized Ti3AlC2 particles possess smooth surfaces and dense flake-like microstructure. The reaction mechanism of the electroreduction of TiO2/Al2O3/C mixture precursor has been discussed based on the time- and position-dependent phase constitution analysis. In addition, two-dimensional (2D) Ti3AlC2-derived carbides, i.e., Ti3C2Tx and TiCx have been successfully prepared from the electrosynthesized Ti3AlC2 by a chemical etching process and an electrochemical etching process, respectively. Both derived carbides exhibit the similar layered structure, in which single layer carbides are composed of plentiful nanometer carbides. It is suggested that the molten salt electrolysis process has a great potential to be used for the facile synthesis of Mn+1AXn phases (such as Ti3AlC2) from their oxides precursors, and the synthesized Mn+1AXn phases can be further converted into 2D carbidesauthorsversionPeer reviewe

    Antiferromagnetic to Ferrimagnetic Phase Transition and Possible Phase Coexistence in Polar Magnets (Fe1−x_{1-x}Mnx_x)2_2Mo3_3O8_8

    Full text link
    In the present work, magnetic properties of single crystal (Fe1−x_{1-x}Mnx_x)2_2Mo3_3O8_8 (0<x<10<x<1) have been studied by performing extensive measurements. A detailed magnetic phase diagram is built up, in which antiferromagnetic state dominates for x<0.25x<0.25 and ferrimagnetic phase arises for x>0.3x>0.3. Meanwhile, sizeable electric polarization of spin origin is commonly observed in all samples, no matter what the magnetic state is. For the samples hosting a ferrimagnetic state, square-like magnetic hysteresis loops are revealed, while the remnant magnetization and coercive field can be tuned drastically by simply varying the Mn-content or temperature. Possible coexistence of the antiferromagnetic and ferrimagnetic phases is proposed to be responsible for the remarkable modulation of magnetic properties in the samples

    Electronic properties of monolayer copper selenide with one-dimensional moir\'e patterns

    Full text link
    Strain engineering is a vital way to manipulate the electronic properties of two-dimensional (2D) materials. As a typical representative of transition metal mono-chalcogenides (TMMs), a honeycomb CuSe monolayer features with one-dimensional (1D) moir\'e patterns owing to the uniaxial strain along one of three equivalent orientations of Cu(111) substrates. Here, by combining low-temperature scanning tunneling microscopy/spectroscopy (STM/S) experiments and density functional theory (DFT) calculations, we systematically investigate the electronic properties of the strained CuSe monolayer on the Cu(111) substrate. Our results show the semiconducting feature of CuSe monolayer with a band gap of 1.28 eV and the 1D periodical modulation of electronic properties by the 1D moir\'e patterns. Except for the uniaxially strained CuSe monolayer, we observed domain boundary and line defects in the CuSe monolayer, where the biaxial-strain and strain-free conditions can be investigated respectively. STS measurements for the three different strain regions show that the first peak in conduction band will move downward with the increasing strain. DFT calculations based on the three CuSe atomic models with different strain inside reproduced the peak movement. The present findings not only enrich the fundamental comprehension toward the influence of strain on electronic properties at 2D limit, but also offer the benchmark for the development of 2D semiconductor materials.Comment: 14 pages, 12 figures, 25 referenc
    • …
    corecore