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Mesoscopic Magnetic/Semiconductor
Heterostructures

Yong Bing Xu, Ehsan Ahmad, Yong Xiong Lu, Jill S. Claydon, Ya Zhai, and Gerrit van der Laan

Abstract—We report the experimental results of Fe and Fe3O4

nanostructures on GaAs(100) surfaces and hybrid Ferromag-
netic/Semiconductor/Ferromagnetic (FM/SC/FM) spintronic
devices. Element specific x-ray magnetic circular dichroism
(XMCD) measurements have shown directly that Fe atoms on
the GaAs(100) 4 6 surface are ferromagnetic. Within cov-
erages of 2.5 to 4.8 ML superparamagnetic nanoclusters are
formed and exhibiting strong uniaxial anisotropy, of the order
of 6.0 105 erg/cm3. The coercivities of epitaxial Fe dot arrays
films grown on GaAs(100) were observed to be dependent on the
separation and size of the dots indicating that interdot dipolar
coupling affects the magnetization processes in these dots. In ad-
dition Fe3O4 films grown on deformed GaAs(100) substrates have
been observed to form nanostripes following the topography of the
substrate and magneto-optical Kerr effect (MOKE) measurements
showed that these nanostripes have uniaxial magnetic anisotropy
with easy axis perpendicular to the length of the nanostripes.
Meanwhile the FM/SC/FM vertical device has exhibited a biasing
current dependent on MR characteristics, with a maximum
change of 12% in the MR observed, indicating for the first time a
large room temperature spin injection and detection.

Index Terms—Epitaxial ferromagnetic thin film, ferromagnetic/
semiconductor hybrid structures, spintronics.

I. INTRODUCTION

H
YBRID ferromagnetic–semiconductor (FM-SC) devices

where ferromagnetic materials are used in conjunction

with semiconductor materials is emerging as a significant

area of research known as “spintronics” with the aim to de-

velop next-generation nonvolatile and fast devices [1]–[4]. In

these devices, the electron spin, as well as the charge, will be

manipulated for the operation of information processing, and

they are expected to be nonvolatile, versatile, fast, and capable

of simultaneous data storage and processing while, at the

same time, consuming less energy. High-density data storage,

microelectronics, sensors, quantum computing, and biomedical

applications are among the applications which would benefit

from research and development of such devices. The challenge

in developing next-generation spintronics devices is the syn-

thesis of high-quality materials with Curie temperature above

room temperature and large spin polarization at the Fermi level.
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Fig. 1. (a) Normalized (XAS) and (b) corresponding XMCD spectra for Fe
thickness of 0.5 ML capped with 9 ML of Co and followed by 7 ML of Cr.
The STM micrograph of the 0.5 ML Fe coverage is shown as insert of (b). The
dimension of the micrograph is 20 � 20 nm .

In this context, epitaxial ferromagnetic thin films grown on

semiconductors like GaAs and InGaAs have already been in the

forefront [5], [6]. Very recently, half metallic magnetic oxides

such as CrO , Fe O , etc., have drawn considerable attention

because of their unique property of producing spin polarization

of 100% at the Fermi level [7]. In this paper, we will report

our work on: 1) the growth of Fe/GaAs heterostructures, and in

particular, the nanoclusters formed at the initial stage and their

magnetic properties; 2) patterned single crystal Fe dot arrays on

GaAs; 3) magnetite nanostripes on deformed GaAs(100); and

4) magnetoresistance (MR) properties of a FM/SC/FM vertical

spintronic device.

II. SAMPLE FABRICATION

The Fe films were grown in a molecular beam epitaxy

(MBE) system using e-beam evaporators with the pressure

below 5 10 mbar and deposition rates of approximately

one monolayer (ML) per minute. To reduce the intermixing of

Fe with Ga, In, or As at the interface, the films were grown

at room temperature [5]. In order to obtain Fe O films, Fe

films were grown epitaxially on GaAs(100) substrates and then

oxidized in an ultrahigh vacuum (UHV) chamber with an O

environment of 5 10 mbar at 500 K [7]. The Fe dot arrays

were fabricated using electron-beam lithography operated at

50 keV followed by ion-beam etching through an intermediate

Al-mask prepared by metallization and liftoff process. The

FM/SC/FM device was fabricated as follows. A 15 ML film of

Co with 20 ML of Cr capping layer was deposited on a 10-mm

1536-125X/$20.00 © 2006 IEEE
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Fig. 2. (a) FMR data of the field H as function of field orientation angle for a 4.1 ML thick Fe film on GaAs(100). (b) The MOKE loop of a 4 ML Fe film
along the [0-11] direction.

10 mm As-desorbed GaAs(100) substrate. The GaAs(100)

substrate was of the following structure: As-capping/GaAs

(50 nm, n-type, 10 cm )/Al Ga As (200 nm, n-type,

10 cm )/GaAs(100). Optical lithography was performed on

the sample from the backside to open a 200 m 200 m

window. Selective chemical etching was done through the

backside window until the AlGaAs layer is reached and then a

30-nm NiFe layer followed by a 10-nm Cr layer was thermally

evaporated.

III. RESULTS AND DISCUSSION

A. FM/SC Interface and Nanoclusters at the Initial Growth

Stages

XMCD measurements were performed on monolayers and

sub-ML coverages of Fe on GaAs(100) and on InAs(100). We

have found that monolayers of Fe are ferromagnetic at room

temperature. In order to gain insight into the Fe/GaAs inter-

face, we have grown submonolayer of Fe films and capped with

a 9 ML Co. Fig. 1 represents the normalized x-ray absorption

spectra (XAS) taken under opposite applied field directions and

the resulting XMCD spectra for 0.5 ML Fe. The XMCD mea-

surements reveal that Fe at the GaAs interface is ferromagnetic

as it exhibited a bulk like spin moment of and

an enhanced orbital moment of . The interface

properties, as we know, are an issue for successful spin injec-

tion between ferromagnetic layers and semiconductors. In the

insert of Fig. 1(b), the STM micrograph of 0.5 ML coverage

of Fe shows that Fe atoms form three-dimensional nanoclus-

ters, which are preferably bonded to the Ga dimmer rows of the

GaAs(100) surface.

The superparamagnetic phase forms in a narrow thickness

range of 3.5–4.8 ML for Fe/GaAs and 2.5–3.8 ML for Fe/InAs,

respectively [5], [8]. The exchange interaction within these clus-

ters leads to internal ferromagnetic ordering, thus giving rise to

the well-known superparamagnetic phase. Fig. 2(b) shows the

superparamagnetic response of the MOKE loop obtain from a

4 ML film. The asymmetry of the MOKE loop might be due

to the second order contribution in the MOKE measurement,

as discussed in reference [5]. Ferromagnetic resonance (FMR)

measurements were carried out to investigate the anisotropy of

the nanoclusters. Fig. 2(a) shows the experimental data of FMR

Fig. 3. Effect of interdot separation on coercivity of the Fe dot array with the
SEM micrograph as insert. The error bar is comparable with the size of the data
points.

field as a function of field orientation angle of a 4.1 ML

Fe film on GaAs(100) substrate. The measurements show that

the nanoclusters have large uniaxial anisotropy with the easy

and hard axes parallel to the [0-11] and [011] directions, re-

spectively. Theoretical fitting of the data provides an in-plane

uniaxial anisotropy constant as high as 6.0 10 erg/cm of for

the 4.1 ML sample with zero cubic contribution for the super-

paramagnetic nanocluster.

B. Patterned Single Crystal Fe Dot Arrays

Patterning an epitaxial film into elements has the advantage of

modifying micromagnetic structures via the competing magne-

tocrystalline anisotropy and dipolar fields [9]. Epitaxial Fe(100)

circular dot arrays 30 nm in thickness and of different diame-

ters and separations grown on GaAs(100) have been patterned

by e-beam lithography, and studied using magnetic force mi-

croscopy and focused magneto-optical Kerr effect. In our study,

evidence of the effects of interdot dipole coupling on both the

domain structure and the coercivity was found. The coercivity of

the dot arrays was found to be dependent on separation and the

diameter , as shown in Fig. 3 with the SEM micrograph of the
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Fig. 4. (a) The SEM micrograph of magnetite nanostripes formed on
GaAs(100) substrate. (b) The horizontal axis is parallel to the [011] direction
MOKE loops of the Fe nanostripes obtained along four crystallographic
directions for a coverage of 4.2 nm.

1- m dot arrays as insert. The domain structure of the 1- m-di-

ameter dot arrays also shows the effect of strong interdot cou-

pling when the separation is reduced down to around 100 nm.

This provides us with the evidence that interdot dipole coupling

affects both the domain structure and the coercivity, illustrating

that both the dot diameter and separation are crucial parameters

in patterned magnetic data storage media.

C. Magnetite Nanostripes on Deformed GaAs(100)

Half metallic magnetite Fe O has recently been attracting

great attention as a promising material for spintronics due to

its high spin polarization near the Fermi surface and high Curie

temperature. We have demonstrated, for the first time, the

synthesis of single crystal Fe O ultrathin films on GaAs(100)

[7]. Here we further show that Fe O nanostripes could be

formed on deformed GaAs(100) by controlling the substrate

processing and postgrowth annealing. Before growth the GaAs

substrates were prepared by chemical and thermal treatments

with a chevron-featured RHEED pattern observed when the

electron beam was along the GaAs(100)[011] direction [10].

Following the growth of Fe this chevron-like pattern becomes

less prominent, but it appears again after the oxidation of the Fe

into magnetite in 5 10 mbar oxygen at 500 K for 1200 s.

This is due to the formation of the nanoscale magnetite stripes

along the [011] direction. The SEM images show that the size

of the nano stripes is around 100 600 nm as shown in

Fig. 4(a). MOKE measurements reveal that the 4.2-nm sample

exhibits uniaxial magnetic anisotropy properties with the easy

axis along the [0-11] direction which is perpendicular to the

length of the nanostripes. This suggests that the magnetic

Fig. 5. Magneto-resistance curve of a FM/SC/FM hybrid device. The device
structure is shown schematically in the insert. The arrow indicates the direction
of current flow.

properties of the nanostripes are controlled by the deformation

of the Fe O lattice.

D. Hybrid Spintronics Devices

The transport measurements were made in a current-perpen-

dicular to plane (CPP) geometry from NiFe to Co layer through

the AlGaAs/GaAs layer. The most striking feature is a biasing-

dependent MR characteristic, as shown in Fig. 5. At low bias

current, the MR is negligible. However, beyond a critical cur-

rent of 5 A, the MR increases. A maximum change of about

12% in the MR is observed. This is a large change compared

to ordinary anisotropic magnetoresistance (AMR) effects mea-

sured at room temperature. As the MR becomes stable beyond a

critical current, it rules out the possibility that the MR could be

resulting from the Lorentz force. On the contrary, the MR de-

pends on bias current, and as we have a sandwich structure with

a SC layer between two FM layers, these direct MR measure-

ments indicate a large room temperature spin injection and de-

tection through the semiconductor layers, as recently suggested

by optical spin detection [11].

IV. CONCLUSIONS

We have shown the growth of hybrid mesoscopic ferromag-

netic/semiconductor structures by conventional lithography and

epitaxial mesoscopic growth techniques. These ferromagnetic

micro/nano scale structures behaves in different ways de-

pending on the detailed fabrication/growth process and should

have potentials to become materials for future spintronics as

they are integrated with semiconductors and their sizes could

go down to nano/atomic scales. We have also shown that

FM/SC/FM vertical spintronic device could produce room

temperature MR as high as 12% and could be useful for field

sensor applications, for example.
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