201 research outputs found

    Efficient Estimation of the Partly Linear Additive Hazards Model with Current Status Data

    Full text link
    This paper focuses on efficient estimation, optimal rates of convergence and effective algorithms in the partly linear additive hazards regression model with current status data. We use polynomial splines to estimate both cumulative baseline hazard function with monotonicity constraint and nonparametric regression functions with no such constraint. We propose a simultaneous sieve maximum likelihood estimation for regression parameters and nuisance parameters and show that the resultant estimator of regression parameter vector is asymptotically normal and achieves the semiparametric information bound. In addition, we show that rates of convergence for the estimators of nonparametric functions are optimal. We implement the proposed estimation through a backfitting algorithm on generalized linear models. We conduct simulation studies to examine the finite‐sample performance of the proposed estimation method and present an analysis of renal function recovery data for illustration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110752/1/sjos12108.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110752/2/sjos12108-sup-0001-supinfo.pd

    Convergence of the tail probability for weighted sums of negatively orthant dependent random variables

    Get PDF
    summary:In this research, strong convergence properties of the tail probability for weighted sums of negatively orthant dependent random variables are discussed. Some sharp theorems for weighted sums of arrays of rowwise negatively orthant dependent random variables are established. These results not only extend the corresponding ones of Cai [4], Wang et al. [19] and Shen [13], but also improve them, respectively

    Strand Displacement Amplification for Multiplex Detection of Nucleic Acids

    Get PDF
    The identification of various targets such as bacteria, viruses, and other cells remains a prerequisite for point-of-care diagnostics and biotechnological applications. Nucleic acids, as encoding information for all forms of life, are excellent biomarkers for detecting pathogens, hereditary diseases, and cancers. To date, many techniques have been developed to detect nucleic acids. However, most of them are based on polymerase chain reaction (PCR) technology. These methods are sensitive and robust, but they require expensive instruments and trained personnel. DNA strand displacement amplification is carried out under isothermal conditions and therefore does not need expensive instruments. It is simple, fast, sensitive, specific, and inexpensive. In this chapter, we introduce the principles, methods, and updated applications of DNA strand displacement technology in the detection of infectious diseases. We also discuss how robust, sensitive, and specific nucleic acid detection could be obtained when combined with the novel CRISPR/Cas system

    Efficient Estimation of the Partly Linear Additive Hazards Model with Current Status Data

    Get PDF
    ABSTRACT. This paper focuses on efficient estimation, optimal rates of convergence and effective algorithms in the partly linear additive hazards regression model with current status data. We use polynomial splines to estimate both cumulative baseline hazard function with monotonicity constraint and nonparametric regression functions with no such constraint. We propose a simultaneous sieve maximum likelihood estimation for regression parameters and nuisance parameters and show that the resultant estimator of regression parameter vector is asymptotically normal and achieves the semiparametric information bound. In addition, we show that rates of convergence for the estimators of nonparametric functions are optimal. We implement the proposed estimation through a backfitting algorithm on generalized linear models. We conduct simulation studies to examine the finite-sample performance of the proposed estimation method and present an analysis of renal function recovery data for illustration

    Laser-assisted synthesis of two-dimensional transition metal dichalcogenides: a mini review

    Get PDF
    The atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted the researcher’s interest in the field of flexible electronics due to their high mobility, tunable bandgaps, and mechanical flexibility. As an emerging technique, laser-assisted direct writing has been used for the synthesis of TMDCs due to its extremely high preparation accuracy, rich light–matter interaction mechanism, dynamic properties, fast preparation speed, and minimal thermal effects. Currently, this technology has been focused on the synthesis of 2D graphene, while there are few literatures that summarize the progress in direct laser writing technology in the synthesis of 2D TMDCs. Therefore, in this mini-review, the synthetic strategies of applying laser to the fabrication of 2D TMDCs have been briefly summarized and discussed, which are divided into top-down and bottom-up methods. The detailed fabrication steps, main characteristics, and mechanism of both methods are discussed. Finally, prospects and further opportunities in the booming field of laser-assisted synthesis of 2D TMDCs are addressed

    Analytical vectorial structure of non-paraxial four-petal Gaussian beams in the far field

    Full text link
    The analytical vectorial structure of non-paraxial four-petal Gaussian beams(FPGBs) in the far field has been studied based on vector angular spectrum method and stationary phase method. In terms of analytical electromagnetic representations of the TE and TM terms, the energy flux distributions of the TE term, the TM term, and the whole beam are derived in the far field, respectively. According to our investigation, the FPGBs can evolve into a number of small petals in the far field. The number of the petals is determined by the order of input beam. The physical pictures of the FPGBs are well illustrated from the vectorial structure, which is beneficial to strengthen the understanding of vectorial properties of the FPGBs

    Vectorial structure of a hard-edged-diffracted four-petal Gaussian beam in the far field

    Full text link
    Based on the vector angular spectrum method and the stationary phase method and the fact that a circular aperture function can be expanded into a finite sum of complex Gaussian functions, the analytical vectorial structure of a four-petal Gaussian beam (FPGB) diffracted by a circular aperture is derived in the far field. The energy flux distributions and the diffraction effect introduced by the aperture are studied and illustrated graphically. Moreover, the influence of the f-parameter and the truncation parameter on the nonparaxiality is demonstrated in detail. In addition, the analytical formulas obtained in this paper can degenerate into un-apertured case when the truncation parameter tends to infinity. This work is beneficial to strengthen the understanding of vectorial properties of the FPGB diffracted by a circular aperture

    Stabilized COre Gene and Pathway Election Uncovers Pan-Cancer Shared Pathways and a Cancer-Specific Driver

    Get PDF
    Approaches systematically characterizing interactions via transcriptomic data usually follow two systems: (i) coexpression network analyses focusing on correlations between genes and (ii) linear regressions (usually regularized) to select multiple genes jointly. Both suffer from the problem of stability: A slight change of parameterization or dataset could lead to marked alterations of outcomes. Here, we propose Stabilized COre gene and Pathway Election (SCOPE), a tool integrating bootstrapped least absolute shrinkage and selection operator and coexpression analysis, leading to robust outcomes insensitive to variations in data. By applying SCOPE to six cancer expression datasets (BRCA, COAD, KIRC, LUAD, PRAD, and THCA) in The Cancer Genome Atlas, we identified core genes capturing interaction effects in crucial pan-cancer pathways related to genome instability and DNA damage response. Moreover, we highlighted the pivotal role of CD63 as an oncogenic driver and a potential therapeutic target in kidney cancer. SCOPE enables stabilized investigations toward complex interactions using transcriptome data

    Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the availability of rice and sorghum genome sequences and ongoing efforts to sequence genomes of other cereal and energy crops, the grass family (Poaceae) has become a model system for comparative genomics and for better understanding gene and genome evolution that underlies phenotypic and ecological divergence of plants. While the genomic resources have accumulated rapidly for almost all major lineages of grasses, bamboo remains the only large subfamily of Poaceae with little genomic information available in databases, which seriously hampers our ability to take a full advantage of the wealth of grass genomic data for effective comparative studies.</p> <p>Results</p> <p>Here we report the cloning and sequencing of 10,608 putative full length cDNAs (FL-cDNAs) primarily from Moso bamboo, <it>Phyllostachys heterocycla </it>cv. <it>pubescens</it>, a large woody bamboo with the highest ecological and economic values of all bamboos. This represents the third largest FL-cDNA collection to date of all plant species, and provides the first insight into the gene and genome structures of bamboos. We developed a Moso bamboo genomic resource database that so far contained the sequences of 10,608 putative FL-cDNAs and nearly 38,000 expressed sequence tags (ESTs) generated in this study.</p> <p>Conclusion</p> <p>Analysis of FL-cDNA sequences show that bamboo diverged from its close relatives such as rice, wheat, and barley through an adaptive radiation. A comparative analysis of the lignin biosynthesis pathway between bamboo and rice suggested that genes encoding caffeoyl-CoA O-methyltransferase may serve as targets for genetic manipulation of lignin content to reduce pollutants generated from bamboo pulping.</p

    Short-term effects of intravenous batroxobin in treatment of sudden sensorineural hearing loss: a propensity score-matched study

    Get PDF
    BackgroundSudden sensorineural hearing loss (SSNHL) can cause great panic in patients. Whether it is advantageous to add intravenous batroxobin in the treatment of SSNHL remains to be determined. This study aimed to compare the short-term efficacy of therapy combined with intravenous batroxobin and that without intravenous batroxobin in SSNHL patients.MethodsThis retrospective study harvested the data of SSNHL patients hospitalized in our department from January 2008 to April 2021. The hearing levels on the admitted day (before treatment) and the discharge day were considered pre-treatment hearing and post-treatment hearing, respectively. The hearing gain was the difference value of pre-treatment hearing and post-treatment hearing. We used Siegel's criteria and the Chinese Medical Association of Otolaryngology (CMAO) criteria to evaluate hearing recovery. The complete recovery rate, overall effective rate, and hearing gain at each frequency were considered outcomes. Propensity score matching (PSM) was conducted to balance the baseline characteristics between the batroxobin group and the non-batroxobin group. Sensitivity analysis was carried out in flat-type and total-deafness SSNHL patients.ResultsDuring the study period, 657 patients with SSNHL were admitted to our department. Among them, a total of 274 patients met the enrolled criteria of our study. After PSM, 162 patients (81 in each group) were included in the analysis. Once the hospitalized treatment was completed, the patients would be discharged the next day. Logistic regression analysis of the propensity score-matched cohort indicated that both the complete recovery rates [Siegel's criteria, OR: 0.734, 95% CI: 0.368–1.466, p = 0.381; CMAO criteria, OR: 0.879, 95% CI: 0.435–1.777, p = 0.720] and the overall effective rates [Siegel's criteria and CMAO criteria, OR: 0.741, 95% CI: 0.399–1.378, p = 0.344] were not significantly different between the two treatment groups. Sensitivity analysis has shown similar results. For flat-type and total-deafness SSNHL patients, no significant difference was found in post-treatment hearing gain at each frequency between the two groups after PSM.ConclusionThere was no significant difference in short-term hearing outcomes between treatment with batroxobin and treatment without batroxobin in SSNHL patients by Siegel's and CMAO criteria after PSM. Future studies for better therapy regimens of SSNHL are still needed
    corecore