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ABSTRACT. This paper focuses on efficient estimation, optimal rates of convergence and effec-
tive algorithms in the partly linear additive hazards regression model with current status data. We
use polynomial splines to estimate both cumulative baseline hazard function with monotonicity con-
straint and nonparametric regression functions with no such constraint. We propose a simultaneous
sieve maximum likelihood estimation for regression parameters and nuisance parameters and show
that the resultant estimator of regression parameter vector is asymptotically normal and achieves
the semiparametric information bound. In addition, we show that rates of convergence for the esti-
mators of nonparametric functions are optimal. We implement the proposed estimation through
a backfitting algorithm on generalized linear models. We conduct simulation studies to examine
the finite-sample performance of the proposed estimation method and present an analysis of renal
function recovery data for illustration.

Key words: backfitting, rate of convergence, semiparametric information bound, sieve method,
splines

1. Introduction

In many applications, the response variable of interest is the time to occurrence of an event.
When current status instead of exact timing of an event is observed, it results in the so-called
current status data. For example, in a clinical study, suppose that T is time to occurrence of
a certain event like tumour onset and X.t/ D .X1.t/; : : : ; Xd .t//

0 is a d -dimensional covari-
ate process, which may be dependent on time t and observable up to t . Here, a0 denotes the
transpose of a column vector a. Owing to different practical reasons, such as study budget con-
straint, a subject may be examined at a random time C so that the actual response variable T
is not observed directly; instead, a pair of observations .C;�/ is yielded, where � D I ŒC � T �
is an indicator of subjects’ current status. Therefore, the available data for a subject are given
by .C;�;X.t/ .t � C//.

Lin & Ying (1994) considered an additive hazards regression (AHR) model in that the hazard
function at time t , given the covariate value x.t/ up to t , is assumed to take the following form:

�.t jx.t// D �0.t/C ˇ̌̌
0x.t/; (1)

where ˇ̌̌ is a d -dimensional regression parameter vector and �0.t/ is an unknown baseline
hazard function. To estimate ˇ̌̌ , the covariate process x.�/ is usually restricted to only external
covariates; see Kalbfleisch & Prentice (2002, section 6.3) for details.

Current status data are frequently encountered in practice; some real-world examples are
given in Shiboski (1998) and Shiboski & Jewell (1992) and in one recent study on renal func-
tion recovery (Heung et al., 2012). In the use of regression model to address the relationships
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between event time and covariates, the (Cox, 1972) proportional hazards (PH) model is com-
monly the method of choice. For instance, for the Cox PH model with current status data,
Huang (1996) studied the maximum likelihood estimation using a profile likelihood approach.
Being formed in a different way, the AHR model (1) enables the characterization of different
types of associations between event time and covariates, which sometimes are quite appealing
for practitioners. It has been shown in some circumstances that the AHR model can be more
plausible and interpretable than the Cox PH model (Lin & Ying, 1994; McKeague & Sasieni,
1994). However, such a model has not yet been widely used in practice largely because of its
numerical difficulty until the breakthrough work of Lin et al. (1998). Their work showed a
novel connection of an AHR model to an ordinary Cox PH model based on the following fact.
That is, when a Cox PH model governs over the monitoring intensity, techniques of fitting the
Cox PH model with right-censored data are readily applicable to the AHR model. This finding
effectively alleviates the numerical difficulty in the AHR model, where any standard software
with available numerical recipe for the Cox PH model may be directly employed. Later, Mart-
inussen & Scheike (2002) developed a more efficient estimation method based on the efficient
score estimating equations where a more flexible nonparametric model is proposed for the mon-
itoring time C . Under some regularity conditions, their efficient estimator is verified to achieve
the semiparametric information bound.

In this paper, we consider an extension of the AHR model to allow greater flexibility with
nonparametric functions of covariates. In addition to the covariate process X.t/, denote a J -
dimensional vector by W D .W1; : : : ; WJ /

0 of baseline covariates. The conditional hazard
function of event time given covariate values .x.�/0;w0/ 2 R

d � R
J specified in a partly linear

additive form is modelled as follows:

�.t jx.s/; 0 � s � t;w/ D �0.t/C ˇ̌̌
0x.t/C �1.w1/C � � � C �J .wJ /; (2)

where x.�/ D .x1.�/; : : : ; xd .�//
0, w D .w1; : : : ; wJ /

0, �0 is the unknown baseline hazard
function, ˇ̌̌ is the d -dimensional regression parameter vector and �1; : : : ; �J are unknown
smooth functions. Alternatively, this model can be expressed in terms of the cumulative hazard
function,

ƒ.t jz.s/; 0 � s � t;w/ D ƒ0.t/C ˇ̌̌
0z.t/C t

°
�1.w1/C � � � C �J .wJ /

±
; (3)

where ƒ0.t/ D
R t
0
�0.s/ ds is the cumulative baseline hazard function and z.t/ D

R t
0

x.s/ ds.
In real applications, it is desirable for the model to accommodate some covariates, such as

drug treatment or other categorical variables, in parametric forms and others in nonparametric
forms when they are potentially nonlinearly associated with the hazard function. Then param-
eter ˇ̌̌ may be interpreted as covariate effects, adjusting for wj ’s effects nonparametrically. To
the best of our knowledge, the proposed model (2) has not been systematically studied in the
current literature. Our goals are to find efficient and optimal estimations for both the paramet-
ric and nonparametric components in model (2) and to provide a feasible computing algorithm
to obtain numerical results.

According to Huang & Rossini (1997), in dealing with interval-censored data (including cur-
rent status data as a special case), two features regarding the likelihood function make the
related estimation different from estimations with other types of censored data. First, the like-
lihood of model (2) is a function of finite-dimensional parameter ˇ̌̌ and infinite-dimensional
nuisance parametersƒ0.�/ and �j .�/, j D 1; : : : ; J . Second, the parameter of interest ˇ̌̌ and the
nuisance parameters ƒ0.�/ and �j .�/’s need to be estimated simultaneously in order to achieve
semiparametric efficiency for the estimator of ˇ̌̌ . Because of interval censoring, we cannot
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take the route of classical partial likelihood theory or as such to derive desirable asymptotic
properties of the proposed simultaneous estimators. To overcome the difficulty, two promising
approaches suggested in the literature include semiparametric maximum likelihood estima-
tion (SPMLE) (e.g. Huang, 1996) and sieve maximum likelihood estimation (SMLE) (e.g.
Rabinowitz et al., 1995; Huang & Rossini, 1997). In particular, Huang & Rossini (1997) made a
comparison between SMLE and SPMLE methods in the proportional odds model and showed
that the SMLE of the baseline distribution converged faster than the SPMLE under certain
smoothness conditions of the baseline distribution. For example, when the baseline distribution
function has a second-order bounded derivative, the convergence rate of the SMLE can achieve
an order of O.n2=5/, which is faster than the SPMLE’s cubic rate O.n1=3/. In addition, the
SMLE is also computationally easier than the SPMLE, because the sieve likelihood function
typically involves fewer number of parameters than the semiparametric likelihood function.

With current status data, Xue et al. (2004) studied a partly linear accelerated failure time
model, which contains only one nonparametric component, where the SMLE method was used
for estimation. Regarding model (2), one similar but not directly related work is the partly lin-
ear transformation model considered by Ma & Kosorok (2005a). Another work by Ma (2011)
focused on the partly linear AHR cure model, which included only one effectively nonpara-
metric covariate. Ma & Kosorok (2005a) considered penalized log-likelihood estimation for the
partly linear transformation (PLT) model. In their PLT model, there are two unknown func-
tions: one is the nondecreasing transformation function, which is estimated by the cumulative
sum diagram approach of Groeneboom & Wellner (1992), and the other is the smooth regres-
sion function, which is estimated by a sieve method. It is shown that convergence rates of these
two nonparametric estimators are dominated by the rate of the SPMLE, namely O.n1=3/. Ma
(2011) obtained estimators with similar properties.

According to Ma & Kosorok (2005a) and Ma (2011), both estimators Oƒn.t/ and O�n.w/ (see
(8) and (7)) of the cumulative baseline hazard function and the nonparametric function of
covariate can only achieve the cubic convergence rate, which is not optimal. This is regarded as
a consequence of not using the sieve approach to estimate ƒ0.t/, instead using the nonpara-
metric maximum likelihood estimation approach based on isotonic regression, which involves
more unknown parameters than the sieve approach and hence requires a larger sample size. In
addition, most of the existing models are limited to include only one nonparametric function
of covariate. Including more than one nonlinear function of covariate in the model is clearly
needed. Moreover, to understand theoretical properties of estimators and to implement them
in computation are our primary tasks in this paper.

Our overarching goal concerning estimation and inference in model (2) with current sta-
tus data is threefold: first, to establish an efficient estimator of ˇ̌̌ , the regression parameter
of possibly time-dependent linear covariates; second, to develop nonparametric estimators for
functions ƒ0 and �j ’s with faster convergence rates; and third, to provide and test effec-
tive algorithms that allow fast computation of the proposed estimators. We adopt the sieve
likelihood and empirical process approaches to achieve the preceding three objectives. Our
contributions are beneficial to both methodological and practical studies, because modelling
flexibility and improved efficiencies in estimation and computation are very appealing. Fur-
thermore, smoothed monotonic estimator of ƒ0.t/ gives rise to a better interpretation than a
non-smoothed piecewise constant function obtained by the SPMLE.

Our strategy of deriving efficient estimation and faster convergence rates is to invoke the
SMLE method for the estimation of nuisance nonparametric parameters in model (2). To do
so, we plan to construct two sieve spaces. One sieve space for ƒ0 is constructed on the basis
of nonnegative monotone polynomial splines, and the other space for individual �j is gener-
ated by the basis of unconstrained polynomial splines. The SMLE method is then applied to
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simultaneously estimate all parameters. We show that the resulting estimator of ˇ̌̌ is asymptot-
ically normal and semiparametrically efficient. We also show that the convergence rates of the
resulting sieve estimators for the nonparametric functions are of the order p=.1C2p/, provided
that these unknown functions have continuous and bounded pth-order derivatives on certain
finite intervals.

The paper is organized as follows. In Section 2, we introduce polynomial splines and
articulate model assumptions. In Section 3, we present our main results. Section 4 concerns
computing algorithms to implement the proposed estimation procedure, and Section 5 dis-
cusses inference methods. Section 6 presents a simulation study to evaluate finite-sample
performance of the proposed methods. Section 7 is devoted to an application regarding the
analysis of renal function recovery data. We conclude the paper with a discussion in Section 8.
All the proofs are relegated to the appendix and the additional supporting information in the
supplementary material.

2. Definitions and assumptions

Let �.w/ D �1.w1/ C � � � C �J .wJ / and v D .c; z.c/;w/. Denote the regression function by
g.v/ D ƒ.c/Cˇ̌̌ 0z.c/Cc�.w/. Let .ˇ̌̌0; ƒ0; �0/ represent the set of true parameter values, where
�0.w/ D �01.w1/C� � �C�0J .wJ /. Denote g0.v/ D ƒ0.c/C ˇ̌̌

0
0z.c/C c�0.w/. The observable

random variables are .�;V/ 2 ¹0; 1º � R
C � R

dCJ , where V D .C;Z.C /;W/. Assume that
C and T are conditionally independent given the covariate history .Z.�/;W/ up to time C . Let
.�i ;Vi /, i D 1; : : : ; n, be an independent and identically distributed (i.i.d.) random sample
drawn from the distribution of .�;V/.

We construct two sieve spaces of polynomial splines, one for � and the other for ƒ, respec-
tively. Assume that W takes values in Œa; b�J , where a and b are finite numbers. Let a D �0 <

�1 < � � � < �K < �KC1 D b be a set of knots that partition Œa; b� into .K C 1/ sub-intervals,
with IKi D Œ�i ; �iC1/, i D 0; : : : ; K � 1 and IKK D Œ�K ; �KC1�, where K � Kn D O.n�/

is a sample size-dependent positive integer such that max1�i�KC1.�i � �i�1/ D O.n��/,
0 < � < 0:5. The reason for postulating an upper bound of 0.5 on � is that, according to Stone
(1985), the optimal rate of convergence of a nonparametric estimator in an L2-norm is typi-
cally of the form n�p=.2pC1/, p � 1, which is achieved at � D 1=.2p C 1/. This implies that
0 < � � 1=.2pC1/ < 0:5, namely the upper bound of � will not exceed 0.5. Let Sn be the space
of polynomial splines of order � � 1, in which a functional element s satisfies the following: (i)
s is a �th-order polynomial on interval IKi for 0 � i � K, and (ii) s is r times continuously
differentiable on Œa; b� for � � 2 and 0 � r � � � 2.

Let ˆn be a collection of functions � on Œa; b�J with additive form �.w/ D �1.w1/C � � � C

�J .wJ /, with �j 2 Sn, j D 1; : : : ; J . According to Schumaker (1981, p. 117, Corollary 4.10),
there exists a local basis ¹Bk ; 1 � k � qnº for Sn, where Bk are normalized B-spline basis
functions and qn D Kn C �. Thus, for any �j 2 Sn, we can write

�j .wj / D

qnX
kD1

	jkBk.wj /; 1 � j � J: (4)

Suppose that the support of variable C is a finite interval, say Œlc ; uc �. Then a partition of
this interval can be made such that max1�k�NC1.tk � tk�1/ D O.n��/, where tk are knots,
k D 0; 1; : : : ; N C 1, with t0 D lc and tNC1 D uc , N � Nn D O.n�/. Let Ln be the
space of polynomial splines similar to Sn, on the basis of knots t0; t1; : : : ; tN and sub-intervals,
INk D Œtk ; tkC1/, k D 0; : : : ; N � 1 and INN D ŒtN ; tNC1�.
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Let Ln be the collection of nonnegative and nondecreasing functions ƒ 2 Ln on Œlc ; uc �.
Then for any ƒ 2 Ln, we can write

ƒ.t/ D

rnX
kD1

˛kLk.t/; (5)

where Lk.t/ are normalized B-spline basis functions and rn D Nn C �. Because ƒ.t/ is non-
negative and monotonically nondecreasing, the coefficients in (5) are subject to a constraint
0 � ˛1 � ˛2 � � � � � ˛rn . By theorem 5.9 of Schumaker (1981), both nonnegativity and mono-
tonicity ofƒ.t/ are guaranteed by such a constraint on the coefficients. This class of monotone
B-splines has been used by Lu et al. (2007) to approximate the logarithm of baseline mean
function. This approach renders an SMLE method analytically and computationally simpler.
Because the number of basis B-splines, rn, is often taken much smaller than the sample size n,
the curse of dimensionality is greatly alleviated, and the resulting computational burden is less
than that of SPMLE.

Using the preceding two sieve spaces, we can proceed with the sieve-based maximum likeli-

hood estimators of .ˇ̌̌; ƒ; �/ as follows. Denote 


 D .ˇ̌̌
0
; 			 0; ˛̨̨ 0/0. Let O


n D . Ǒ̌̌

0

n; O			
0
n; Ǫ̨̨
0
n/
0 with

O			n D ¹ O	jk W 1 � j � J; 1 � k � qnº and Ǫ̨̨n D ¹ Ǫi W 1 � i � rn; 0 � Ǫ1 � Ǫ2 � � � � � Ǫrnº be
the values that maximize

ln.ˇ̌̌; �;ƒ/ D

nX
iD1

�
�i log

®
exp

®
�ƒ.Ci / � ˇ̌̌

0Zi .Ci / � Ci�.Wi /
¯¯

C .1 ��i / log
®
1 � exp

®
�ƒ.Ci / � ˇ̌̌

0Zi .Ci / � Ci�.Wi /
¯¯�

;

(6)

with �.Wi / D
PJ
jD1 �j .Wji /, 1 � i � n, where �j andƒ are given in (4) and (5), respectively.

For w D .w1; : : : ; wJ /0, the resulting estimators of � and ƒ are given by

O�n.w/ D
JX
jD1

O�jn.wj /

D

JX
jD1

"
qnX
kD1

O	jkBk.wj / �

´
n�1

nX
iD1

qnX
kD1

O	jkBk.Wji /

μ#
(7)

and

Oƒn.t/ D

rnX
kD1

ǪkLk.t/; (8)

where each O�jn is centred such that n�1
Pn
iD1
O�jn.Wji / D 0. The following conditions are

assumed in order to establish large-sample properties of the preceding estimators.

(B1) Suppose the support of C is interval SŒC � D Œlc ; uc � and 0 < lc < uc < 1. Let
p be an integer, p � 1. Let A and L be the classes of functions � on Œa; b� and ƒ
on Œlc ; uc �, respectively, whose pth derivatives �.p/ and ƒ.p/ exist and are continuous.
Assume the following: (i) the true regression parameter value ˇ̌̌0 is an interior point of
a bounded parameter space B � R

d , the true functions ƒ0 2 L and each �0j 2 A for
1 � j � J ; and (ii) in the rest of the paper, Z D Z.C /, unless otherwise noticed. For
any c 2 Œlc ; uc �, E.ZjC D c/ D 0 and EŒ�0j .Wj /� D 0, 1 � j � J . Moreover, for any
ˇ̌̌ 2 B and ˇ̌̌ ¤ ˇ̌̌0, the probability P.ˇ̌̌ 0Z ¤ ˇ̌̌ 00ZjC/ > 0.
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(B2) Denote the conditional hazard of C given W and X.�/ by �.t/ D �.t;X.t/;W/. Assume
the following: (i) the distribution of C is absolutely continuous; and (ii) event time
T and censoring time C are conditionally independent given .X.t/;W/ or .Z.t/;W/

.t � C/, the covariate history up to C .
(B3) (i) Assume that the distribution of T , F0, is continuous. The support of C , SŒC �, is

strictly contained in the support of F0, that is, 0 < lc < uc < �F0 , �F0 D inf¹t W
F0.t/ D 1º. (ii) The covariate Z.t/ takes values in a bounded subset of Rd for t on
S.C /, and the covariate W takes values in Œa; b�J .

(B4) Suppose there exists a small positive constant " such that P.T < lc jC;Z;W/ > " and
P.T > uc jC;Z;W/ > " in probability 1 with respect to the probability measure of
.C;Z;W/.

(B5) Suppose the underlying parameter function of .ˇ̌̌0; ƒ0; �0/ satisfies g0.V/ D ƒ0.C /C
ˇ̌̌
0
0ZC C�0.W/ > 0 with probability 1.

(B6) Let q � 1 be a positive integer. For 1 � j � J , the qth partial derivative of the joint
density f .c; z;w/ of .C;Z;W/ with respect to c or wj exists and is bounded.

Similar conditions to those listed in the preceding text have been considered in the liter-
ature (e.g. Huang, 1996), and they are in fact quite reasonable. Condition (B1)(i) requires
certain smoothness characteristics on ƒ and �j ’s in order to apply splines-based smoothing
techniques. (B1)(ii) ensures identifiability of the parameters. Condition (B2) implies noninfor-
mative censoring mechanism. (B3)(i) bounds likelihood and score functions away from infinity
at the boundaries of the support of the observed event time. The boundedness condition on
the covariates in (B3)(ii) is an unpleasant restriction, but in many practical situations, contin-
uous covariates may be typically rescaled to fall between 0 and 1. Condition (B4) ensures that
the probability of being either left censored or right censored is positive and bounded away
from zero regardless of the covariate values. Condition (B5) requires the true cumulative haz-
ard function to be a positive function. Condition (B6), a key assumption in Huang (1999) as
well, implies that the partial score functions (or partial derivatives) of the nonparametric com-
ponents in the least favourable direction are nearly zero, so that the root-n convergence rate
and asymptotic normality of the finite-dimensional estimator can be obtained.

3. Theory of estimation

Consider the following two counting processes,

N1.t/ D �IŒC � t � and N2.t/ D .1 ��/I ŒC � t �:

Let N.t/ D N1.t/ C N2.t/, Y.t/ D I Œt � C � and p.t/ D p.t; z.t/;w/ D P.T � C jC D

t; z.t/;w/. By (3), we have

p.t/ D exp
�
�
®
ƒ0.t/C ˇ̌̌

0z.t/C t ¹�1.w1/C � � � C �J .wJ /º
¯�
: (9)

The two compensated counting processes are given by

M1.t/ D N1.t/ �

Z t
0

Y.s/�.s/p.s/ ds;

M2.t/ D N2.t/ �

Z t
0

Y.s/�.s/.1 � p.s// ds;

(10)

both of which are known as martingales by Martinussen & Scheike (2002).
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Let k � k denote the Euclidean norm; let k � k2 denote the L2-norm with respect to a
probability measure; and let k � k1 denote the supremum norm. For example, kˇ̌̌ � ˇ̌̌0k DqPd

iD1.ˇi � ˇ0i /
2 for ˇ̌̌ D .ˇ1; : : : ; ˇd /

0 and ˇ̌̌0 D .ˇ01; : : : ; ˇ0d /
0; kƒ.C/ � ƒ0.C /k D

jƒ.C/ �ƒ0.C /j; kƒ.C/ �ƒ0.C /k2 D
qR uc

lc
¹ƒ.c/ �ƒ0.c/º2dFC .c/, where FC .�/ is the dis-

tribution function of C ; and k�j .wj /� �0j .wj /k1 D supwj2Œa;b� j�j .wj /� �0j .wj /j. Our
main results are stated in the following three theorems. The proofs of these theorems are pre-
sented in detail in the Appendix. Several technical lemmas are needed to prove these theorems;
their proofs are relegated to the supplementary material.

Theorem 1. Under conditions (B1)–(B5), the efficient score for estimation of ˇ̌̌ in model (2) is

l�
ˇ̌̌
.�;V/ D

Z uc
lc

t
®
QZ.t/ � a�.t/ � h�.W/

¯ ² p.t;Z.t/;W/

1 � p.t;Z.t/;W/
dM2.t/ � dM1.t/

³
;

where QZ.t/ D Z.t/=t , h�.w/ D h�
1
.w1/C � � � C h�

J
.wJ / and components of .a�; h�

1
; : : : ; h�

J
/ are

the L2-norm functions that minimize

E

�
C 2

��� QZ.C / � a�.C / � h�.W/
���2 p.C;Z.C /;W/

1 � p.C;Z.C /;W/

�
:

The information bound for estimation of ˇ̌̌ is

I.ˇ̌̌/ D E
h
l�
ˇ̌̌
.�;V/˝2

i
D E

��Z uc
lc

t
®
QZ.t/ � a�.t/ � h�.W/

¯ ² p.t;Z.t/;W/

1 � p.t;Z.t/;W/
dM2.t/ � dM1.t/

³��

D E

�Z uc
lc

t2
®
QZ.t/ � a�.t/ � h�.W/

¯˝2 p.t;Z.t/;W/

1 � p.t;Z.t/;W/
Y.t/�.t/ dt

�

D E

�
C 2

®
QZ.C / � a�.C / � h�.W/

¯˝2 p.C;Z.C /;W/

1 � p.C;Z.C /;W/

�
;

(11)

where a˝2 D a˝a0 denotes the out-product of a column vector a and hM i denotes the predictable
variation process of a martingale M.t/.

Theorem 2. Suppose that conditions (B1)–(B5) hold and 0 < � < 0:5. For the estimators defined

in (6)–(8), let Ogn.v/ D Oƒn.c/C Ǒ̌̌
0

nz.c/C c O�n.w/. Then

k Ogn � g0k
2
2 D E

h
Oƒn.C /C Ǒ̌̌

0

nZ.C /C C O�n.W/ �
®
ƒ0.C /C ˇ̌̌

0
0Z.C /C C�0.W/

¯i2
D Op

	
n�.1��/ C n�2�p



;

where the expectation is taken under the distribution of V D .C;Z.C /;W/ conditional on the
given sample. Furthermore, if I.ˇ̌̌0/ in (11) is nonsingular, then

k Ǒ̌̌ n � ˇ̌̌0k
2 D Op

	
n�.1��/ C n�2�p



;

k Oƒn �ƒ0k
2
2 D Op

	
n�.1��/ C n�2�p



;

k O�jn � �0j k
2
2 D Op

	
n�.1��/ C n�2�p



; 1 � j � J:
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Theorem 3. Suppose that conditions (B1)–(B6) hold and I.ˇ̌̌0/ in (11) is nonsingular. If � sat-
isfies the restrictions of 0:25=p < � < 0:5 and �.p C q/ > 0:5, where p and q are orders of
differentiation postulated in (B1) and (B6), respectively, then

p
n. Ǒ̌̌ n � ˇ̌̌0/ D n

�1=2I�1.ˇ̌̌0/

nX
iD1

l�
ˇ̌̌0
.�i ;Vi /C op.1/

d
! N.0;†.ˇ̌̌0//;

where
d
! denotes convergence in distribution †.ˇ̌̌0/ D I

�1.ˇ̌̌0/.

In the estimation ofƒ0 and �0j ’s, the optimal choice of � satisfying the restrictions stated in
theorem 3 is � D 1=.1C2p/, which leads to np=.1C2p/ as the convergence rate of Oƒn and O�n by
theorem 2. Note that this is indeed the optimal rate in nonparametric regression and regression
splines (Stone, 1982; Claeskens et al., 2009). Especially for ƒ0, when p � 2, the convergence
rate of Oƒn is faster than the order of n1=3, the rate of the SPMLE obtained by Huang (1996),
for the estimation of the cumulative hazard function in the Cox model with current status
data as well as by Ma & Kosorok (2005a) for the estimation of the transformation function
in the partly linear transformation models. Our proposed estimator Ǒ̌̌ n achieves both optimal
parametric convergence rate n1=2 and semiparametric efficiency bound.

4. Implementation

Noticing that from (9)

log¹p.C /º D �
�
ƒ.C/C ˇ̌̌

0Z.C /C C ¹�1.W1/C � � � C �J .WJ /º
�
;

we may regard model (2) with current status data as a generalized partly linear additive model
for binary responses with log-link and predictor �, where  D ƒ.C/C ˇ̌̌ 0Z.C /CC ¹�1.W1/C
� � � C �J .WJ /º.

In the log-likelihood (6), let Li D .L1.Ci /; : : : ; Lrn.Ci //
0, Bji D .B1.Wji /; : : : ;

Bqn.Wji //
0, Bi D .B0

1i
; : : : ;B0

Ji
/0, Zi D Zi .Ci /, ˛̨̨ D .˛1; : : : ; ˛rn/

0, 			j D .	j1; : : : ; 	jqn/
0,

			 D .			 0
1
; : : : ; 			 0

J
/0, ��� D .ˇ̌̌ 0; 			 0/0 and ZBi D .Z0i ; .Ci 	Bi /0/0. Through the B-spline smoothing

technique, the predictor becomes a linear predictor of the following form,

i D

rnX
kD1

˛kLk.Ci /C ˇ̌̌
0Zi C Ci

JX
jD1

qnX
kD1

	jkBk.Wji /

D ˛̨̨ 0Li C ˇ̌̌
0Zi C Ci

JX
jD1

			 0jBji

D L0i ˛̨̨ C Z0i ˇ̌̌ C CiB
0
i			

D L0i ˛̨̨ C ZB0i���; (12)

and pi D pi .Ci / D exp.�i /. It follows that the score equations for .˛̨̨; ���/ can be written as

L0u D 0 and ZB0u D 0; (13)

where  D .1; : : : ; n/0, L D @=@˛̨̨ D .L1;L2; : : : ;Ln/0 and ZB D @=@��� D .ZB1; : : : ;ZBn/
0,

respectively, are n � rn and n � .d C J 	 qn/ matrices and u D @ln=@ is an n � 1 vector
with elements
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ui D
.�i � pi /dpi=di

pi .1 � pi /
D
�.�i � pi /

1 � pi
:

The score equations (13) can be solved separately for ˛̨̨ and ��� using a modified version of the
Newton scoring algorithm for generalized linear models. Note that the two equations in (13)
are subject to the monotonicity constraint given in (5). The algorithm iterates the following
steps, starting from k D 0 with the initial estimates ˛̨̨.0/ and ��� .0/ of ˛̨̨ and ��� :


 Step k. Given estimates ˛̨̨.k/ and ��� .k/, calculate u and the weight matrix � D Var.u/ D
diag.!1; : : : ; !n/, with weights

!i D
.dpi=di /

2

pi .1 � pi /
D

pi

1 � pi
;

then construct the adjusted dependent variable:

y D L˛̨̨.k/ C ZB��� .k/ C��1u:


 Step .k C 1/. Update ��� .k/ by optimizing the following weighted least squares function:

min
���

°�
y � L˛̨̨.k/ � ZB���

�0
�
�
y � L˛̨̨.k/ � ZB���

�±
:

Denote the minimizer by ��� .kC1/, update ˛̨̨.k/ by solving the following weighted isotonic
regression:

min
˛̨̨

°�
y � L˛̨̨ � ZB��� .kC1/

�0
�
�
y � L˛̨̨ � ZB��� .kC1/

�±
;

subject to 0 � ˛1 � � � � � ˛rn . Denote the minimizer by ˛̨̨.kC1/.

Cycle these two steps until a certain convergence criterion is satisfied. This procedure is known
as backfitting (Hastie et al., 2008, Chapter 9), a modification of the Gauss–Seidel procedure
for solving simultaneous linear equations (Thisted, 1988). Our model can be viewed as a spe-
cial case of the generalized additive models (GAM) discussed by (Hastie et al., 2008), in which
the outcome is a binary response � and covariates are .C;Z.C /;W/. Different from a classi-
cal GAM, here, we treat the monitoring time C as a nonlinear covariate, its functional form is
subject to a monotonic non-deceasing constraint. Hence, we cannot apply the classical GAM
directly. Instead we consider the approach of backfitting. That is, in step .kC1/, our algorithm
proceeds to optimize the weighted least squares function for unconstrained parameters and to
run the weighted isotonic regression for constrained parameters iteratively. The idea of utiliz-
ing adjusted dependent variable y in step k originates from the numerical recipe in generalized
linear models. Using the B-splines, we approximate a nonlinear predictor by a linear predic-
tor i in (12), so that techniques from the generalized linear models can be readily applied,
including the iterative weighted least squares method with y as a working response. To be pre-
cise, in the expression of y, we treat L˛̨̨.k/ C ZB��� .k/ as a linear predictor with a design matrix
.L;ZB/ and a regression parameter vector .˛̨̨ 0

.k/
; ���
0
.k//
0 and ��1u as an error term, whose

variance–covariance is given by

Var.��1u/ D Var
	
!�11 u1; !

�1
2 u2; : : : ; !

�1
n un


0�
D ��1:

Therefore, the estimation procedure becomes solving a standard iterative weighted least squares
problem. The weighted isotonic regression implemented in step .k C 1/ is an extension of
the theory of isotonic regression discussed by Robertson et al. (1988, Chapter 1), where a
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nonparametric estimate in the form of a step function is presented. Numerically, such an esti-
mate is obtained by using the pool adjacent violators algorithm, which essentially minimizes a
weighted sum of squares. In our approach, we reparameterize ˛k in (5) to Q̨k and then rewrite
ƒ.t/ as

ƒ.t/ D

rnX
kD1

Q̨k QLk.t/;

where the coefficients are subject to the constraints Q̨1 D ˛1 � 0, Q̨k D ˛k � ˛k�1 � 0,
for k D 2; : : : ; rn, and QLk.t/ D

Prn
iDk

Li .t/, for k D 1; 2; : : : ; rn. This reparametrization
makes computation much easier in any standard computing environment such as R software.
The convergence properties of the algorithm are similar to those of the Gauss–Seidel method.
Depending on the matrix H D .L;ZB/0�.L;ZB/ D .hij /i;jD1;:::;dCrnCJ�qn , the algorithm
will converge if either H is positive definite or strictly or irreducibly diagonally dominant (i.e.
jhii j �

P
j¤i jhij j). When it converges, the global convexity of the log-likelihood function

guarantees that we can reach the maximum.
Clearly, the proposed method needs to select orders and knots of B-splines. In practice, we

often use cubic B-splines for every unknown function. In terms of the choice of knots for
B-splines, for simplicity, we assume rn D qn in (4) and (5), that is, Nn C 4 D Kn C 4 so
that the numbers of knots for all the .J C 1/ nonparametric functions are the same; they are
equal to K0n D Kn C 2, where Kn is the number of internal knots in a finite interval. For
example, let �0 and �KnC1 be the two endpoints of interval Œa; b�, the support of a covariate;
the knots �j , j D 0; 1; : : : ; Kn C 1, may be chosen as the ¹j=.Kn C 1/ � 100%ºth quantiles
of observations on this covariate. We proposed to determine qn or Kn by Bayesian infor-
mation criterion (BIC), a model selection criterion proposed by Schwarz (1978). Specifically,

suppose O


qn D . Ǒ̌̌
0

qn
; O			
0
qn
; Ǫ̨̨
0
qn
/0 is the maximum likelihood estimator from (6) under two

qn-dimensional spline spaces Sn and Ln. Define

BIC.qn/ D �2ln . O


qn/C log.n/ ¹d C .J C 1/qnº : (14)

A large value of BIC implies lack of fit. Various forms of BIC have been proposed and tested
for knots selection in semiparametric models. For instance, He et al. (2002) applied the BIC
in a semiparametric longitudinal data model. From both our theoretical and empirical results,
we suggest search for the first local minimum of BIC over the range max¹n1=5; 4º � qn �

10 C 2n1=5. There usually exists only one local minimum within this range. The reason for
qn starting at 4 at minimum is that for cubic splines, the smallest possible space without any
internal knots is of four dimensions.

One potential limitation for the additive hazards model (2) is that the estimated conditional
cumulative hazard function given by (3) may occasionally result in negative values or very
large positive values, which consequently generates improper conditional probabilities in (9);
that is, for a C value, P.C/ is bigger than 1 or has small probabilities close to zero. To avoid
these two extremes in numerical calculation, we propose to confine P.C/ within an interval
Œ10�6; 1 � 10�6� and the resulting algorithm worked numerically quite stably.

5. Inference

Standard inference method for ˇ̌̌0 is conducted with the utility of the estimated information
matrix I. Ǒ̌̌ n/ via the plug-in method, which provides a consistent estimator of the limiting
variance–covariance matrix of Ǒ̌̌ n. In our case, because the closed form of I.ˇ̌̌0/ is hard to
derive analytically, this plug-in method is not available in general here. Although there are

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.



316 X. Lu and P. X.-K. Song Scand J Statist 42

many alternative methods in the literature, such as the nonparametric bootstrap and the m
out of n subsampling bootstrap, computational burden is a major concern. We found that
the weighted bootstrap procedure suggested by Ma & Kosorok (2005b) is easy to implement
and works reasonably well in our setting. We just need to modify the algorithm in Section 4
by replacing ui and !i by ui D � QWi .�i � pi /=.1 � pi / and !i D 2pi=.1 � pi /, respec-
tively, where QWi , i D 1; : : : ; n are i.i.d. positive random weights drawn from QW , for example,
exponential distribution with a rate equal to 1, satisfying E. QW / D 1 and var. QW / D 1 and inde-
pendent of .C;�;Z.C /;W/. More details concerning the weighted bootstrap can be found in
their paper.

6. Simulation experiment

To evaluate finite-sample performances of the proposed estimators, we conduct a simulation
study. Event times are generated from an exponential distribution with a hazard rate given
as follows:

�.t jx;w/ D �0.t/C ˇ̌̌
0xC �1.w1/C �2.w2/; (15)

where �0.t/ � 0:1t C 3:3, ˇ̌̌ D .ˇ1; ˇ2/0 D .0:3; 0:5/0 and covariates X1 � UniformŒ�1:5; 1:5�
and X2 � Bernoulli.prob D 0:5/ � 0:5. The two nonlinear functions are �1.w1/ D

sin¹�.w1=3 � 1/º and �2.w2/ D 0:3¹.w2 � 6/
2 � 3º, with both W1 and W2

i.i.d.
� UniformŒ3; 9�.

Note that these two covariates satisfy the condition in (B1)(ii), as E.X1/ D E.X2/ D

E¹�1.W1/º D E¹�2.W2/º D 0. Censoring times are generated from an exponential distri-
bution with a hazard rate �c.t jx;w/ D 1 C jx1 C x2 C 0:5w1 � 0:5w2j, confined in interval
Œ0:04; 1:8�. In the simulation, we use cubic B-splines to fit the three unknown curves, where the
number of knots is determined by the BIC given in (14). The simulation is replicated 1000 times
for sample sizes equal to n D 200, 400 and 800.

Table 1 summarizes the results of estimation and coverage probability. We observe that the
averages of parameter estimates are close to the true values, so the estimation consistency is evi-
dent. The weighted bootstrap method tends to slightly underestimate the standard deviations
of the parameter estimators, which may be attributed to lower coverage probabilities when the
sample size is 200 or smaller. However, when sample size increases to 400 or larger, the sam-
ple standard deviations and the averaged estimated standard deviations are becoming close,
and the coverage probabilities of 95% confidence intervals are very near the nominal level.

Table 1. Summary results of the simulation study for the partly linear AHR model with
current status data. Mean: mean of the parameter estimates; SSD: sample standard
deviation of the parameter estimates; AESD: average estimated standard deviation
of the parameter estimates based on 100 weighted bootstrap samples; CP: coverage
probability of the 95% confidence interval; n: sample size. Results are based on 1000
simulation replicates

n True ˇ̌̌ Mean SSD AESD CP(%)

200 ˇ1 D 0:3 0.276 0.325 0.314 93.5
ˇ2 D 0:5 0.517 0.598 0.576 94.5

400 ˇ1 D 0:3 0.296 0.233 0.227 94.1
ˇ2 D 0:5 0.483 0.416 0.409 95.1

800 ˇ1 D 0:3 0.293 0.172 0.170 94.7
ˇ2 D 0:5 0.501 0.291 0.299 95.1
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Fig. 1. Histograms of Ǒ1 and Ǒ2 and chi-squared probability plot of the joint distribution of Ǒ1 and Ǒ2,
based on 1000 replicates with sample size 800.

Histograms of Ǒ1 and Ǒ2 and chi-square probability plot for the joint distribution of Ǒ1 and
Ǒ
2 are shown in Figure 1 for n D 800. It is apparent that the marginal distributions and the

joint distribution of Ǒ1 and Ǒ2 are approximately normal and bivariate-normal, respectively.
The fitted curves and pointwise 95% confidence intervals for �1.�/, �2.�/ and ƒ0.�/ are shown
in Figure 2. It is evident that average estimated curves capture the true curves very well and
that the true curves lie in the pointwise 95% confidence intervals. Because of the sparsity of
data near the right limit of interval Œ0:04; 1:8�, the estimated cumulative baseline hazard curve
Oƒn.t/ deviates from the true curve slightly starting at t D 1:0, and the 95% confidence interval
becomes wider. In summary, the proposed method has shown satisfactory empirical evidence
in good alignment with our theoretical results.
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Fig. 2. Sieve estimates and 95% confidence intervals for functions �1.w1/, �2.w2/ and ƒ0.t/, based on
1000 replicates with sample size 800. The solid lines stand for the true curves. The dashed lines are the
average estimated curves. The dotted lines represent the pointwise 95% confidence intervals.

7. Analysis of renal function recovery

Among hospitalized renal patients, acute kidney injury (AKI) is a typical kidney disease syn-
drome with substantial impact on both short-term and long-term clinical outcomes. Identifying
risk factors associated with renal recovery in patients requiring renal replacement therapy
(RRT) can help clinicians develop strategies to prevent non-recovery and improve patient’s
quality of life. At the University of Michigan Hospital, a retrospective study was conducted
to understand the relationship between the risk of renal function recovery and clinical covari-
ates of interest. The study involved 170 consecutive hospitalized patients who developed AKI
requiring RRT. For each of the patients, his or her time of the inception of dialysis was recorded
along with time of hospital discharge, which may be regarded as a monitoring time. In this
study, the investigators only observed patient’s current status of renal recovery at discharge time
but did not know exactly when renal function recovery occurred. More details concerning the
study background and preliminary findings can be found in Heung et al. (2012).
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Fig. 3. Estimated curves �1.BScr/, �2.Age/ andƒ0.t/ in the analysis of renal function recovery data.

In this analysis, we are particularly interested in applying the partly linear AHR model to
assess the relationship between the hazard of occurrence of renal recovery and several clin-
ical factors, including baseline serum creatinine level, use of vasopressor, age and gender.
Measuring baseline serum creatinine is a useful and inexpensive method of evaluating renal
dysfunction. It is known that creatinine is a non-protein waste product of creatine phosphate
metabolism by skeletal muscle tissue.

To begin our analysis, let T be time in days from the time of starting dialysis to the date
of renal function recovery, and let C be the monitoring time given as of the time of hospital
discharge. In our analysis, to obtain a more stable estimation of the cumulative hazard function
on the right boundary, we removed two outliers with the largest observed monitoring times,
100 and 367 days, so that the remaining 168 observations were used and the values of C range
from 0 to 78 days with a mean of 17.7 days. Through the preliminary analysis of Heung et al.
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(2012), two baseline covariates, baseline serum creatinine (BScr, varying between 0.5 and 5.6)
and use of vasopressor (VP, binary) are important clinical predictors, as well as age (varying
between 17 and 94 years) and gender (binary). VP is coded as 1 for yes and 0 for no. Gender is
coded as 1 for male and 0 for female.

Denote the indicator of renal recovery at the time of discharge by �, 1 for ‘no’ and 0 for
‘yes’. Clearly, � D 1 corresponds to the case of being right censored by C , whereas � D 0

corresponds to the case of being left censored by C . Let �.t;X;W/ be the hazard function of
recovery time T , where covariate vectors X D .X1; X2/0 and W D .W1; W2/0 includeX1 D VP,
X2 D Gender, W1 D BScr and W2 D Age. Model (2) is applied to establish a relationship
between the hazard function and the four covariates. The parameter estimates are obtained as
Ǒ
1 D 0:00093 and Ǒ2 D �0:01489. To test the effects of VP and gender on the hazards rate,

we use the weighted bootstrap procedure to estimate standard errors, which are obtained as
0.03122 and 0.02838, respectively. The corresponding Z-test statistic values equal to 0.030 and
�0.525, and the p-values equal to 0.976 and 0.600, implying that both adjusted effects of VP
and gender are not statistically significant in the AHR model. The three estimated curves for
�2.BScr/, �2.Age/ and ƒ0.t/ are shown in Figure 3. They indicate nonlinear effects of BScr
and age on the hazards rate. The hazards rate decreases with an increase in BScr or age or both,
which suggests that it will take a longer time to recover from renal injury for older patients
with higher BScr, owing to probably more severe renal dysfunction at baseline and/or older age.
These results are consistent with those findings in the preliminary analysis reported by Heung
et al. (2012). But our analysis provides more detailed nonlinear profiles regarding the effects of
BScr and age, both of which are of clinical importance.

8. Concluding remarks

In this paper, we have established an efficient sieve estimation in the partly linear AHR model
with current status data and an effective backfitting algorithm for implementation. Our model
allows including multiple nonparametric functions of covariates and time-dependent linear
covariates, which is more appealing and useful than Ma & Kosorok (2005a)’s model and Ma
(2011)’s model with only a single nonparametric function of covariate. As clearly illustrated
in our data example of renal function recovery, two covariates have both exhibited nonlinear
effects to predict the hazard rate. We use polynomial splines to model all the nonparametric
regression components. The splines for the cumulative hazard function are restricted to non-
negative and monotone polynomial splines. By maximizing the log-likelihood function over the
spline spanned sieve spaces, we jointly estimate both nonparametric functions and the para-
metric vector of regression coefficients. We show that the estimator for the parameter vector of
regression coefficients is semiparametrically efficient and the sieve estimators of the unknown
functions, including the cumulative baseline hazard function, achieve the optimal convergence
rates, which are faster than the cubic rate existing in the current literature (e.g. Ma & Kosorok,
2005a; Ma, 2011). The theory pertaining to the monotonicity-constrained sieve estimation
method based on polynomial splines with arbitrary orders is technically and numerically new
in the context of current status data analysis regardless of the AHR model or the Cox PH
model. The proposed method can also handle time-dependent linear covariates, which have led
us to make use of the theory of counting processes and martingales combined with the the-
ory of empirical processes. The utility of the martingale theory in our proofs is a noticeably
new approach in the analysis of ‘case 1’ interval-censored or current status data. For example,
in comparison with Huang (1999), who considered the partly linear additive Cox PH model
with right-censored data, we have seemingly greater technical challenges because in our set-
ting of current status data, it is not possible to profile out the baseline hazard function, so that

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 42 Partly linear additive hazards model 321

we need to simultaneously estimate the baseline and nonparametric functions subject to the
monotonicity constraint.

To facilitate implementation of the proposed method, we provide the backfitting algorithm
via a generalized linear model for binary outcomes in the estimation of the parametric vector of
regression coefficients and multiple nonparametric functions of covariates with a monotonicity
constraint. Because it is difficult to analytically yield a closed form for the asymptotic variance
of the parameter estimator, statistical inference is based on the weighted bootstrap method.
A simulation study shows that the proposed estimation and inference methods work well. In
comparison with other semiparametric models such as the partly linear additive Cox model
and partly linear transformation models, the partly linear AHR model offers a very useful
alternative to analyse current status data.

If one is interested in estimating the survival function for a given covariate process z.t/
and auxiliary covariate vector w, as suggested by Zeng et al. (2006), a natural estimator

would take the form OSn.t/ D expŒ� Oƒn.t/ � Ǒ̌̌
0

nz.t/ � t¹ O�1n.w1/C � � � C O�Jn.wJ /º�. Because
Ǒ̌̌ 0
nz.t/C t¹ O�1n.w1/C � � � C O�Jn.wJ /º varies with time t , the monotonicity of OSn.t/ might not

hold. A modified estimator satisfying the monotonicity constraint may be given by the max-
imal decreasing function below OSn.t/, denoted by OS�n .t/. Using the established large-sample
theory for . Oƒn; Ǒ̌̌ n; O�n/ in this paper, we can show with little effort that OS�n .t/ is also consistent.

It is worth mentioning that Kosorok (2008) provided a comprehensive survey of the theory
for semiparametric models. Demonstrated in this monograph, empirical processes have become
standard tools to study semiparametric estimation and inferences. We have adopted these tools
combined with the theory of martingales in this paper to deal with constrained joint estima-
tion and simultaneous inference in the partly linear AHR model with current status data. We
envision that the techniques developed in this paper can also be applied to other important
survival analysis models, such as partly linear additive Cox models and partly linear transfor-
mation models, so that the convergence rate of nonparametric estimators may be improved to
the optimal level. Moreover, it is of interest to apply our techniques in other types of censored
data, such as ‘case 2’ interval-censored data studied by Zeng et al. (2006) in a semiparametric
linear additive risk model.

In this paper, we have used regression splines; like all spline-based estimation approaches,
it may have a potential issue of numerical stability in the functional estimation when available
data are sparse. To overcome this, some authors (e.g. Zucker & Karr, 1990; Gray, 1992) sug-
gested to add a certain penalty term in the estimation, so that the resulting estimated functions
can become smoother and avoid overfitting. This idea may be adopted here by subtracting a
penalty function in (6) to improve the estimates. Another issue of practical importance is how
to determine which covariate has a linear form and which has a nonlinear form. Although
desirable, a rigorous procedure remains an unsolved problem in our paper and is worth fur-
ther exploration. In practice, one may gather some preliminary evidence about the functional
form of a covariate by performing hypothesis testing or simple univariate screening analysis.
For partially linear additive models with uncensored data, Zhang et al. (2011) and Lian et al.
(2012) have proposed some procedures for automatic detection of functional forms, and it is
worth investigating in a future work concerning whether their methods may be extended in our
proposed model.
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Appendix: Proofs of theorems 1–3

A.1. Proof of theorem 1

We follow Sasieni (1992) to derive the information bound. Note that Huang (1999) uses the
same approach to obtain the information bound in the partly linear additive Cox model with
right-censored data, where a projection onto a sum space of J C1 non-orthogonal L2 spaces is
the key. In the following, we take similar steps to derive the information bound for the estimator
of ˇ̌̌0.

The log-likelihood function for one observation in terms of counting processes is given by,
up to an additive constant independent of ˇ̌̌ , ƒ and �,

l.ˇ̌̌ ; �;ƒ/ D � log
�
exp

®
�ƒ.C/ � ˇ̌̌

0Z.C / � C�.W/
¯�

C .1 ��/ log
�
1 � exp

®
�ƒ.C/ � ˇ̌̌

0Z.C / � C�.W/
¯�

D

Z
log¹p.t/º dN1.t/C

Z
log¹1 � p.t/º dN2.t/;

where ƒ.t/ D
R t
0
�.s/ ds, p.t/ D p.t;Z.t/;W/ D exp¹�ƒ.t/� ˇ̌̌ 0Z.t/� t�.W/º and N1.t/ and

N2.t/ are given in Section 3. Consider a parametric smooth submodel ¹ƒ.$/ W $ 2 R
d º and

¹�j.$j / W $j 2 R
d ; 1 � j � J º in which ƒ.0/ D ƒ, �j.0/ D �j . Let

a1.t/ D
@ƒ.$/

@$
.t/

ˇ̌̌
ˇ
$D0

;

and

hj .wj / D
@�j.$j /

@$j
.wj /

ˇ̌̌
ˇ
$jD0

; 1 � j � J:

The score operators for ˇ̌̌ , ƒ and �j are the partial derivatives of the log-likelihood
l.ˇ̌̌ ; �1.$1/; : : : ; �J.$J /; ƒ.$// with respect to ˇ̌̌ and .$;$1; : : : ;$J / evaluated at $ D

0;$1 D 0; : : : ;$J D 0. Recall that both M1 and M2 defined in (10) are the martingales. Let
a.t/ D a1.t/=t . We obtain

Plˇ̌̌ �

Z 1
0

QZ.t/t
²

p.t/

1 � p.t/
dM2.t/ � dM1.t/

³
;

Plƒa �
Z 1
0

a.t/t
²

p.t/

1 � p.t/
dM2.t/ � dM1.t/

³
;

Pl�j hj �
Z 1
0

hj .Wj /t
²

p.t/

1 � p.t/
dM2.t/ � dM1.t/

³
; 1 � j � J:

Let Q.t;Z.t/;W/ D t2p.t;Z.t/;W/=¹1 � p.t;Z.t/;W/º. Define L2
	
P
Q

C



� ¹a W E¹ka.C /k2

Q.C;Z.C /;W/º<1º and L0
2
.P
Q

Wj
/�¹hj W E¹hj .Wj /ºD0;E¹khj .Wj /k2Q.C;Z.C /;W/º<

1º, 1 � j � J . Let
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Aƒ D
°
Plƒa W a 2 L2

	
P
Q

C


±
and

Hj D
°
Pl�j hj W hj 2 L02

	
P
Q

Wj


±
; 1 � j � J:

Let h D .h1; : : : ; hJ / and Pl�h D Pl�1h1 C � � � C Pl�J hJ . To obtain the information bound for
estimation of ˇ̌̌0, we apply the non-orthogonal projection approach given by Sasieni (1992) or
the alternating projections theorem of Bickel et al. (1993, Theorem A.4.2).

We first project Plˇ̌̌ onto the spaceAƒ. Finding function Qa.t/ 2 L2
	
P
Q

C



so that Plˇ̌̌� Plƒ.Qa/ ?

Plƒ.a/ is equivalent to finding Qa.t/ 2 L2
	
P
Q

C



such that

E

²	
Plˇ̌̌ � Plƒ.Qa/


0
Plƒ.a/

³
D 0:

It yields

Qa.t/ D
E
®
QZ.t/Y.t/�.t/Q.t;Z.t/;W/

¯
E ¹Y.t/�.t/Q.t;Z.t/;W/º

:

Hence, we have

Plˇ̌̌ � Plƒ.Qa/ D
Z 1
0

®
QZ.t/ � Qa.t/

¯
t

²
p.t;Z.t/;W/

1 � p.t;Z.t/;W/
dM2.t/ � dM1.t/

³
:

Next, we project Pl�j hj onto Aƒ. Using similar calculations, we obtain

bhj .t/ D
E ¹hj .Wj /Y.t/�.t/Q.t;Z.t/;W/º

E ¹Y.t/�.t/Q.t;Z.t/;W/º
;

and

Pl�j hj � Plƒ.bhj / D

Z 1
0

®
hj .Wj / � bhj .t/

¯
t

²
p.t;Z.t/;W/

1 � p.t;Z.t/;W/
dM2.t/ � dM1.t/

³
:

Finally, we project the space generated by Plˇ̌̌ � Plƒ.Qa/ onto the sum space generated by
Pl�j .hj /� Plƒ.b

�
hj
/. DenoteKh D Kh1C� � �CKhJ , whereKhj D Pl�j hj � Plƒ.bhj /, 1 � j � J .

Then the least favourable direction is given by h� D .h�
1
; : : : ; h�

J
/ that minimizes

E

�Z 1
0

k QZ.t/ � Qa.t/ � h�.W/k2Q.t;Z.t/;W/Y.t/�.t/

�
dt;

which is equivalent to finding h� for every hj 2 L02.P
Q

Wj
/ such that

°
Plˇ̌̌ � Plƒ.Qa/

±
�Kh� ? Khj ;

where h�.W/ D h�
1
.W1/C � � � C h�

J
.WJ /. This leads to

E

Z 1
0

®�
QZ.t/ � Qa.t/

�
�Kh�

¯0
.Khj /Q.t;Z.t/;W/Y.t/�.t/ dt D 0: (16)

Let h.W/ D h1.W1/C � � � C hJ .WJ /. Note that
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Kh D
Z 1
0

¹h.W/ � bh.t/º t

²
p.t;Z.t/;W/

1 � p.t;Z.t/;W/
dM2.t/ � dM1.t/

³
;

where

bh.t/ D
E ¹h.W/Y.t/�.t/Q.t;Z.t/;W/º

E ¹Y.t/�.t/Q.t;Z.t/;W/º
:

Let a�.t/ D Qa.t/ � bh�.t/. Because for any a.t/ 2 L2
	
P
Q

C



,

E

Z 1
0

h®�
QZ.t/ � Qa.t/

�
�
�
h�.W/ � bh�.t/

�¯0
a.t/Q.t;Z.t/;W/Y.t/�.t/ dt

i
D 0;

and for any a.t/ 2 L2

	
P
Q

C



and h.W/ belonging to the sum space L0

2

	
P
Q

W1



C � � � C

L0
2

	
P
Q

WJ



,

E

Z 1
0

®
QZ.t/ � .a�.t/C h�.W//

¯0
¹a.t/C h.W/ºQ.t;Z.t/;W/Y.t/�.t/ dt D 0;

we can equivalently obtain .a�; h�
1
; : : : ; h�

J
/ as the solution to the following equations:

E
�®
QZ.C / � a� � h�1 � � � � � h�J

¯
Q.C;Z.C /;W/jC D c

�
D 0 a.s. PC ; (17)

and for 1 � j � J ,

E
�®
QZ.C/ � a� � h�1 � � � � � h�J

¯
Q.C;Z.C /;W/jWj D wj

�
D 0 a.s. PWj : (18)

It is clear that these a� and h� give the desired least favourable directions for the information
bound.

We note that a� C h�
1
C � � � C h�

J
is actually the projection of QZ onto the sum space S D

L2

	
P
Q

C



CL0

2

	
P
Q

W1



C� � �CL0

2

	
P
Q

WJ



. We now show that the sum space S is closed, in which

the project exists. According to proposition 2 of Bickel et al. (1993, pp. 440–441), it suffices to

show that for a 2 L2
	
P
Q

C



and hj 2 L02.P

Q

Wj
/, 1 � j � J ,

E
	
kaC h1 C � � � C hJ k2Q



� mE

	
kak2Q C kh1k

2
Q C � � � C khJ k

2
Q



; (19)

where k � k2
Q
D k � k2Q.C;Z.C /;W/. It is easy to show that a Hilbert space endowed with the

inner product he1; e2iQ D E.e1e2Q/ and the norm kekQ D
p
he; eiQ is still a Hilbert space.

Under conditions (B3)–(B5), we obtain

E
	
kaC h1 C � � � C hJ k2Q



� m1E

	
kaC h1 C � � � C hJ k2



� m2E

	
kak2 C kh1k2 C � � � C khJ k2



� mE

	
kak2Q C kh1k

2
Q C � � � C khJ k

2
Q



:

Thus, (19) holds, where the second inequality follows from lemma 1 of Stone (1985).

A.2. Proof of theorem 2

To prove theorem 2, we need lemmas L.1–L.5, the detail of which is included in the supplemen-
tary material. For l0 defined in lemma L.4 and any g satisfying P l0.�; gn/ � P l0.�; g/ � 0, we
define a distance dn to be
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d2.g; gn/ D P l0.�; gn/ � P l0.�; g/:

Let M0.g/ D P l0.�; g/, � > 0; by lemma L.2 and lemma 3.4.2 of Van der Vaart & Wellner
(1996), we have

E sup
�=2�d.g;gn/��

jPn.l0.�; g// � Pn.l0.�; gn// � .M0.g/ �M0.gn//j

D E sup
�=2�d.g;gn/��

j.Pn � P /¹l0.�; g/ � l0.�; gn/ºj

� n�1=2�q1=2n :

Because Ogn is a consistent estimator of gn shown by lemma L.5, taking � D r�1n , by theorem
3.4.1 of Van der Vaart & Wellner (1996), we obtain

r2nd
2. Ogn; gn/ D Op.1/;

where rn satisfies

r2n

	
r�1n q1=2n



D O

	
n1=2



:

It follows that rn D q
�1=2
n n1=2 D n.1��/=2. Therefore, assuming g D Ogn in lemma L.4, by

lemmas L.4 and L.5,

k Ogn � gnk
2
2 D Op

	
n�.1��/ C n�2�p



:

Because kgn � g0k22 D Op.n
�.1��/ C n�2�p/ by lemma L.3, we have

k Ogn � g0k
2
2 D Op

	
n�.1��/ C n�2�p



:

Observe that

k Ogn � g0k
2
2 D E

h
Oƒn.C /C Ǒ̌̌

0

nZ.C /C C O�n.W/ �
®
ƒ0.C /C ˇ̌̌

0
0Z.C /C C�0.W/

¯i2
;

where the expectation is taken with respect to V D .C;Z.C /;W/. Let q.V/ D p.V/=.1�p.V//,
there exitsm2 > m1 > 0 such that 0 � m1 � q.V/ � m2. For the projections a� and h� defined
in theorem 1,

E

�°
Oƒn.C /C Ǒ̌̌

0

nZ.C /C C O�n.W/ �
�
ƒ0.C /C ˇ̌̌

0
0Z.C /C C�0.W/

�±2
q.V/

�

D E

"²	
Ǒ̌̌
n � ˇ̌̌0


0
QZ.C /C

	
Oƒn.C / �ƒ0.C /



=C C

	
O�n.W/ � �0.W/


³2
C 2q.V/

#

D E

�²	
Ǒ̌̌
n � ˇ̌̌0


0 
QZ.C / � a�.C / � h�.W/

�
C
	
Ǒ̌̌
n � ˇ̌̌0


0 �
a�.C /C h�.W/

�
C
	
Oƒn.C / �ƒ0.C /



=C C

	
O�n.W/ � �0.W/


±2
C 2q.V/

�

D E

"²	
Ǒ̌̌
n � ˇ̌̌0


0 �
QZ.C / � a�.C / � h�.W/

�³2
C 2q.V/

#

CE

�²	
Ǒ̌̌
n � ˇ̌̌0


0 �
a�.C /C h�.W/

�
C
	
Oƒn.C / �ƒ0.C /



=C

C
	
O�n.W/ � �0.W/


±2
C 2q.V/

�
:
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The last equality follows the orthogonality given in the proof of theorem 1. Therefore, the first
term on the right-hand side of the last equality equals

E

"²	
Ǒ̌̌
n � ˇ̌̌0


0 �
QZ.C / � a�.C / � h�.W/

�³2
C 2q.V/

#

D
	
Ǒ̌̌
n � ˇ̌̌0


0
E
h®
QZ.C / � a�.C / � h�.W/

¯˝2
C 2q.V/

i 	
Ǒ̌̌
n � ˇ̌̌0



D
	
Ǒ̌̌
n � ˇ̌̌0


0
I.ˇ̌̌0/

	
Ǒ̌̌
n � ˇ̌̌0



� E

�°
Oƒn.C /C Ǒ̌̌

0

nZ.C /C C O�n.W/ �
�
ƒ0.C /C ˇ̌̌

0
0Z.C /C C�0.W/

�±2
q.V/

�

� m2E

�°
Oƒn.C /C Ǒ̌̌

0

nZ.C /C C O�n.W/ �
�
ƒ0.C /C ˇ̌̌

0
0Z.C /C C�0.W/

�±2�
D m2k Ogn � g0k

2
2

� Op

	
n�.1��/ C n�2�p



:

Because the information matrix I.ˇ̌̌0/ is assumed to be nonsingular, it follows that

k Ǒ̌̌ n � ˇ̌̌0k
2 D Op

	
n�.1��/ C n�2�p



:

This in turn implies that

E
h
Oƒn.C / �ƒ0.C /C C

°
O�n.W/ � �0.W/

±i2
D Op

	
n�.1��/ C n�2�p



and

E
h°
Oƒn.C / �ƒ0.C /

±
C
°
O�n.W/ � �0.W/

±i2
D Op

	
n�.1��/ C n�2�p



:

Thus, by lemma 1 of Stone (1985),

E
°
Oƒn.C / �ƒ0.C /

±2
D Op

	
n�.1��/ C n�2�p



and

E
°
O�jn.W/ � �0j .W/

±2
D Op

	
n�.1��/ C n�2�p



; 1 � j � J:

A.3. Proof of theorem 3

To prove theorem 3, we need lemma L.6, the detail of which is included in the supplementary
material. Because Pns.�; Ogn/ŒZ� D 0, by (C1) and (C2) of lemma L.6, we have

P
®
s.�; Ogn/

�
Z �U�

�
� s.�; g0/

�
Z �U�

�¯
D Pns.�; g0/

�
Z �U�

�
C op

	
n�1=2



:

Hence, by (C3) of lemma L.6,

I.ˇ̌̌0/
	
Ǒ̌̌
n � ˇ̌̌0



D Pns.�; g0/

�
Z �U�

�
C op

	
n�1=2



D Pnl

�
ˇ̌̌0
.�;V/C op

	
n�1=2



:

Finally, by the central limit theorem,
p
n. Ǒ̌̌ n � ˇ̌̌0/ has a limiting normal distribution with the

limiting variance matrix equal to I�1.ˇ̌̌0/; hence, Ǒ̌̌ n is semiparametric efficient. The proof of
theorem 3 is completed.
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