81 research outputs found

    Optimal Discrete Constellation Inputs for Aggregated LiFi-WiFi Networks

    Full text link
    In this paper, we investigate the performance of a practical aggregated LiFi-WiFi system with the discrete constellation inputs from a practical view. We derive the achievable rate expressions of the aggregated LiFi-WiFi system for the first time. Then, we study the rate maximization problem via optimizing the constellation distribution and power allocation jointly. Specifically, a multilevel mercy-filling power allocation scheme is proposed by exploiting the relationship between the mutual information and minimum mean-squared error (MMSE) of discrete inputs. Meanwhile, an inexact gradient descent method is proposed for obtaining the optimal probability distributions. To strike a balance between the computational complexity and the transmission performance, we further develop a framework that maximizes the lower bound of the achievable rate where the optimal power allocation can be obtained in closed forms and the constellation distributions problem can be solved efficiently by Frank-Wolfe method. Extensive numerical results show that the optimized strategies are able to provide significant gains over the state-of-the-art schemes in terms of the achievable rate.Comment: 14 pages, 13 figures, accepted by IEEE Transactions on Wireless Communication

    Artificial disc and vertebra system: a novel motion preservation device for cervical spinal disease after vertebral corpectomy

    Get PDF
    OBJECTIVE: To determine the range of motion and stability of the human cadaveric cervical spine after the implantation of a novel artificial disc and vertebra system by comparing an intact group and a fusion group. METHODS: Biomechanical tests were conducted on 18 human cadaveric cervical specimens. The range of motion and the stability index range of motion were measured to study the function and stability of the artificial disc and vertebra system of the intact group compared with the fusion group. RESULTS: In all cases, the artificial disc and vertebra system maintained intervertebral motion and reestablished vertebral height at the operative level. After its implantation, there was no significant difference in the range of motion (ROM) of C3-7 in all directions in the non-fusion group compared with the intact group (p>;0.05), but significant differences were detected in flexion, extension and axial rotation compared with the fusion group (

    A range ambiguity classification algorithm for automotive LiDAR based on FPGA platform acceleration

    Get PDF
    In the past decade, the automotive light detection and ranging (LiDAR) has been experiencing a rapid expansion stage. Many researchers have been involved in the research of LiDARs and have installed it in vehicles as a means of enhancing autopilot capabilities. Compared with a traditional millimeter wave radar, LiDARs have many advantages such as the high imaging resolution, long measurement range, and the ability to reconstruct 3D information around the vehicle. These features make LiDARs one of the crucial research hotspots in the field of autopilot. The basic principles of LiDARs are the same as those of a laser rangefinder. The distance information can be obtained by locating the echo instant corresponding to the laser emission moment. But if the interval between two adjacent laser pulses is extremely narrow, the regions of the light emission and echo will be overlapped. Therefore, a range ambiguity will occur and the distance information calculation process will become abnormal. Besides, the high resolution of LiDARs is also characterized by its extremely high emissions frequency. Whilst the information about the surrounding environment of an automotive car can be retrieved more accurately, it means that the possibility of range ambiguity is also increasing at the same time. In this paper, we propose an algorithm for solving the range ambiguity problem of the LiDARs based on the concept of classification and can be accelerated by the FPGA approach, for the first time in the field of an automotive LiDAR. The algorithm can be performed by employing a single wavelength pulsed laser and can be specifically optimized for the demands of field programmable gate arrays (FPGAs). While guaranteeing the high resolution of LiDARs, the attenuation of the measurement ability should exceed due to the occurrence of range ambiguity. It can also match the demand for the processing speed of large amounts of point cloud information data. Through controlling the cost of the whole device, the performance of the LiDAR can be greatly improved. The result of this paper might provide a bright future of automotive LiDARs with the high data processing efficiency and the high resolution at the same time

    ‘Green’ fabrication of PVC UF membranes with robust hydrophilicity and improved pore uniformity

    Get PDF
    Hydrophilicity and pore uniformity are the key parameters for ultrafiltration (UF) membranes to avoid fouling and ensure separation effectiveness. In this paper, a simple ‘green’ in-situ chemical reaction assisted phase separation method was studied, in which amine molecules bearing hydrophilic hydroxyl groups were grafted onto polyvinyl chloride (PVC) chains in dissolution process without initiator. The influence of modifier concentration on the structure, separation and anti-fouling performance of the PVC membranes was studied. The results indicated that the robust hydrophilicity, and high pore size uniformity and porosity of were achieved by properly anchoring preferable amine molecules. The pure water flux of the modified membrane was 261.5 L·m−2·h−1, BSA rejection was 99.1 % when 10 wt% SRN was added. Approximately 27 % increase of rejection to BSA, and 10-fold pure water flux that of the pristine PVC membrane. Due to the stable existence of modifiers in the membrane, the improved membrane hydrophilicity was maintained through 320 h filtration and acid/alkali soaking tests. This study provides a simple modification approach to enhance PVC UF membrane hydrophilicity and pore uniformity

    Secondary Production of Gaseous Nitrated Phenols in Polluted Urban Environments

    Get PDF
    Nitrated phenols (NPs) are important atmospheric pollutants that affect air quality, radiation, and health. The recent development of the time-of-flight chemical ionization mass spectrometer (ToF-CIMS) allows quantitative online measurements of NPs for a better understanding of their sources and environmental impacts. Herein, we deployed nitrate ions as reagent ions in the ToF-CIMS and quantified six classes of gaseous NPs in Beijing. The concentrations of NPs are in the range of 1 to 520 ng m(-3). Nitrophenol (NPh) has the greatest mean concentration. Dinitrophenol (DNP) shows the greatest haze-to-clean concentration ratio, which may be associated with aqueous production. The high concentrations and distinct diurnal profiles of NPs indicate a strong secondary formation to overweigh losses, driven by high emissions of precursors, strong oxidative capacity, and high NOx levels. The budget analysis on the basis of our measurements and box-model calculations suggest a minor role of the photolysis of NPs (Peer reviewe
    • …
    corecore