74 research outputs found
Discrete element modelling of railway ballast
Discrete element modelling has been used to capture the essential mechanical features of railway ballast and gain a better understanding of the mechanical behaviour and mechanisms of degradation under monotonic and cyclic loading.
A simple procedure has been developed to generate clumps which resemble real ballast particles. The influence of clump shape on the heterogeneous stresses within an aggregate was investigated in box test simulations. More angular clumps lead to greater homogeneity and the interlocking provides a much more realistic load-deformation response. A simple two-ball clump was used with two additional small balls (asperities) bonded at the surface, to represent a single particle; it is shown that particle abrasion gives the correct settlement response.
A clump formed from ten balls in a tetrahedral shape was used in monotonic and cyclic triaxial test simulations and found to produce the correct response. The interlocking and breaking of very small asperities which find their way into the voids and carry no load was modelled using weak parallel bonds. The interlocking and fracture of larger asperities was modelled by bonding eight small balls to the ten-ball clump. Monotonic tests were performed on triaxial samples under different confining pressures and the results compared with existing experimental data. Tests were also simulated using uncrushable clumps to highlight the important role of asperity abrasion. Cyclic triaxial tests were then simulated on the same aggregates under a range of stress conditions and the results compared to existing experimental data for the same simulated ballast.
The clumps are able to capture the behaviour of ballast under different conditions, and asperity abrasion plays an important role in governing strength and volumetric strain under monotonic loading, and on permanent strains under cyclic loading. The contribution of this thesis is therefore to show that it is possible to model a real granular material under static and cyclic conditions, providing much micro mechanical insight
Discrete element modelling of railway ballast
Discrete element modelling has been used to capture the essential mechanical features of railway ballast and gain a better understanding of the mechanical behaviour and mechanisms of degradation under monotonic and cyclic loading.
A simple procedure has been developed to generate clumps which resemble real ballast particles. The influence of clump shape on the heterogeneous stresses within an aggregate was investigated in box test simulations. More angular clumps lead to greater homogeneity and the interlocking provides a much more realistic load-deformation response. A simple two-ball clump was used with two additional small balls (asperities) bonded at the surface, to represent a single particle; it is shown that particle abrasion gives the correct settlement response.
A clump formed from ten balls in a tetrahedral shape was used in monotonic and cyclic triaxial test simulations and found to produce the correct response. The interlocking and breaking of very small asperities which find their way into the voids and carry no load was modelled using weak parallel bonds. The interlocking and fracture of larger asperities was modelled by bonding eight small balls to the ten-ball clump. Monotonic tests were performed on triaxial samples under different confining pressures and the results compared with existing experimental data. Tests were also simulated using uncrushable clumps to highlight the important role of asperity abrasion. Cyclic triaxial tests were then simulated on the same aggregates under a range of stress conditions and the results compared to existing experimental data for the same simulated ballast.
The clumps are able to capture the behaviour of ballast under different conditions, and asperity abrasion plays an important role in governing strength and volumetric strain under monotonic loading, and on permanent strains under cyclic loading. The contribution of this thesis is therefore to show that it is possible to model a real granular material under static and cyclic conditions, providing much micro mechanical insight
Recommended from our members
Quadruple bonding between iron and boron in the BFe(CO)3- complex.
While main group elements have four valence orbitals accessible for bonding, quadruple bonding to main group elements is extremely rare. Here we report that main group element boron is able to form quadruple bonding interactions with iron in the BFe(CO)3- anion complex, which has been revealed by quantum chemical investigation and identified by mass-selected infrared photodissociation spectroscopy in the gas phase. The complex is characterized to have a B-Fe(CO)3- structure of C3v symmetry and features a B-Fe bond distance that is much shorter than that expected for a triple bond. Various chemical bonding analyses indicate that the complex involves unprecedented Bā£Fe quadruple bonding interactions. Besides the common one electron-sharing Ļ bond and two FeāB dative Ļ bonds, there is an additional weak BāFe dative Ļ bonding interaction. This finding of the new quadruple bonding indicates that there might exist a wide range of boron-metal complexes that contain such high multiplicity of chemical bonds
Aneuploid Embryonic Stem Cells Drive Teratoma Metastasis
Aneuploidy, a deviation of the chromosome number from euploidy, is one of the hallmarks of cancer. High levels of aneuploidy are generally correlated with metastasis and poor prognosis in cancer patients. However, the causality of aneuploidy in cancer metastasis remains to be explored. Here we demonstrate that teratomas derived from aneuploid murine embryonic stem cells (ESCs), but not from isogenic diploid ESCs, disseminated to multiple organs, for which no additional copy number variations were required. Notably, no cancer driver gene mutations were identified in any metastases. Aneuploid circulating teratoma cells were successfully isolated from peripheral blood and showed high capacities for migration and organ colonization. Single-cell RNA sequencing of aneuploid primary teratomas and metastases identified a unique cell population with high stemness that was absent in diploid ESCs-derived teratomas. Further investigation revealed that aneuploid cells displayed decreased proteasome activity and overactivated endoplasmic reticulum (ER) stress during differentiation, thereby restricting the degradation of proteins produced from extra chromosomes in the ESC state and causing differentiation deficiencies. Noticeably, both proteasome activator Oleuropein and ER stress inhibitor 4-PBA can effectively inhibit aneuploid teratoma metastasis
On the Upper Limits of Oxidation States in Chemistry.
The concept of oxidation state (OS) is based on the concept of Lewis electron pairs, in which the bonding electrons are assigned to the more electronegative element. This approach is useful for keeping track of the electrons, predicting chemical trends, and guiding syntheses. Experimental and quantum-chemical results reveal a limit near +8 for the highest OS in stable neutral chemical substances under ambient conditions. OS=+9 was observed for the isolated [IrO4 ]+ cation in vacuum. The prediction of OS=+10 for isolated [PtO4 ]2+ cations is confirmed computationally for low temperatures only, but hasn't yet been experimentally verified. For high OS species, oxidation of the ligands, for example, of O-2 with formation of . O-1 and O-O bonds, and partial reduction of the metal center may be favorable, possibly leading to non-Lewis type structures
Comparison of Proteome Differences between Whole Milk and Skim Milk Based on High-throughput Quantitative Proteomics
Protein is an important nutrient in bovine milk, however, it is not clear about the effect of defatting on the protein content of bovine milk. In this paper, quantitative proteomics labeled with TMT (tandem mass tags) was used to analyze the proteome in whole milk and skim milk to investigate the effect of skimming on milk proteins. A total of 1352 proteins were identified in whole milk and skim milk, and 199 differentially expressed proteins were screened. Compared with whole milk, 67 proteins were up-regulated and 132 proteins were down-regulated after defatting. Among the major active proteins in bovine milk, Īŗ-casein decreased in relative content after defatting, while Ī²-lactoglobulin and lactoferrin increased in relative content after defatting. Ī±-lactalbumin, Ī±s1-casein, Ī±s2-casein, Ī²-casein, bovine serum protein and lactoperoxidase did not differ significantly in relative content. The relative levels of butyrophilin and lactadherin in milk fat globule membrane proteins decreased after defatting. Skimming also had effects on cytoskeleton, metabolism-related proteins in milk, changing the quality and nutritional value of the milk. The analysis of protein in whole and skim milk clarified the effect of skimming on bovine milk protein, which could provide a reference for the development of infant dairy products and the purchase of milk with different fat content by consumers
Genome-wide identiļ¬cation and analysis of heterotic loci in three maize hybrids
Heterosis, or hybrid vigour, is a predominant phenomenon in plant genetics, serving as the basis of crop hybrid breeding, but the causative loci and genes underlying heterosis remain unclear in many crops. Here, we present a large-scale genetic analysis using 5360 offsprings from three elite maize hybrids, which identiļ¬es 628 loci underlying 19 yield-related traits with relatively high mapping resolutions. Heterotic pattern investigations of the 628 loci show that numerous loci, mostly with completeāincomplete dominance (the major one) or overdominance effects (the secondary one) for heterozygous genotypes and nearly equal proportion of advantageous alleles from both parental lines, are the major causes of strong heterosis in these hybrids. Follow-up studies for 17 heterotic loci in an independent experiment using 2225 F2 individuals suggest most heterotic effects are roughly stable between environments with a small variation. Candidate gene analysis for one major heterotic locus (ub3) in maize implies that there may exist some common genes contributing to crop heterosis. These results provide a community resource for genetics studies in maize and new implications for heterosis in plants
Comprehensive analyses of the citrus WRKY gene family involved in the metabolism of fruit sugars and organic acids
Sugars and organic acids are the main factors determining the flavor of citrus fruit. The WRKY transcription factor family plays a vital role in plant growth and development. However, there are still few studies about the regulation of citrus WRKY transcription factors (CsWRKYs) on sugars and organic acids in citrus fruit. In this work, a genome-wide analysis of CsWRKYs was carried out in the citrus genome, and a total of 81 CsWRKYs were identified, which contained conserved WRKY motifs. Cis-regulatory element analysis revealed that most of the CsWRKY promoters contained several kinds of hormone-responsive and abiotic-responsive cis-elements. Furthermore, gene expression analysis and fruit quality determination showed that multiple CsWRKYs were closely linked to fruit sugars and organic acids with the development of citrus fruit. Notably, transcriptome co-expression network analysis further indicated that three CsWRKYs, namely, CsWRKY3, CsWRKY47, and CsWRKY46, co-expressed with multiple genes involved in various pathways, such as Pyruvate metabolism and Citrate cycle. These CsWRKYs may participate in the metabolism of fruit sugars and organic acids by regulating carbohydrate metabolism genes in citrus fruit. These findings provide comprehensive knowledge of the CsWRKY family on the regulation of fruit quality
Analysis of sugar components and identification of SPS genes in citrus fruit development
Sugar is a primary determinant of citrus fruit flavour, but undergoes varied accumulation processes across different citrus varieties owing to high genetic variability. Sucrose phosphate synthase (SPS), a key enzyme in glucose metabolism, plays a crucial role in this context. Despite its significance, there is limited research on sugar component quality and the expression and regulatory prediction of SPS genes during citrus fruit development. Therefore, we analysed the sugar quality formation process in āKiyomiā and āSuccosaā, two citrus varieties, and performed a comprehensive genome-wide analysis of citrus CsSPSs. We observed that the accumulation of sugar components significantly differs between the two varieties, with the identification of four CsSPSs in citrus. CsSPS sequences were highly conserved, featuring typical SPS protein domains. Expression analysis revealed a positive correlation between CsSPS expression and sugar accumulation in citrus fruits. However, CsSPS expression displays specificity to different citrus tissues and varieties. Transcriptome co-expression network analysis suggests the involvement of multiple transcription factors in shaping citrus fruit sugar quality through the regulation of CsSPSs. Notably, the expression levels of four CsWRKYs (CsWRKY2, CsWRKY20, CsWRKY28, CsWRKY32), were significantly positively correlated with CsSPSs and CsWRKY20 might can activate sugar accumulation in citrus fruit through CsSPS2. Collectively, we further emphasize the potential importance of CsWRKYs in citrus sugar metabolism, our findings serve as a reference for understanding sugar component formation and predicting CsSPS expression and regulation during citrus fruit development
- ā¦