2,991 research outputs found

    A Real-Time And High-Precision Algorithm For Frequency Estimation By Fusing Multi-Segment Signals

    Get PDF
    AbstractIn the frequency estimation of multi-segment signals, the error caused by discontinuity among different segments cannot be ignored. By correcting the phase difference of each segment, the results can be enormously improved, but the computational complexity of the algorithm grows on the same time. To resolve this problem, a new fusion algorithm based on spectrum zooming is proposed. The new algorithm performs spectrum zoom analysis to reduce the computational complexity while the precision is guaranteed, which is suitable to those real-time applications. Performance of the algorithm is demonstrated and analyzed through computer simulations

    Towards High-Quality Neural TTS for Low-Resource Languages by Learning Compact Speech Representations

    Full text link
    This paper aims to enhance low-resource TTS by reducing training data requirements using compact speech representations. A Multi-Stage Multi-Codebook (MSMC) VQ-GAN is trained to learn the representation, MSMCR, and decode it to waveforms. Subsequently, we train the multi-stage predictor to predict MSMCRs from the text for TTS synthesis. Moreover, we optimize the training strategy by leveraging more audio to learn MSMCRs better for low-resource languages. It selects audio from other languages using speaker similarity metric to augment the training set, and applies transfer learning to improve training quality. In MOS tests, the proposed system significantly outperforms FastSpeech and VITS in standard and low-resource scenarios, showing lower data requirements. The proposed training strategy effectively enhances MSMCRs on waveform reconstruction. It improves TTS performance further, which wins 77% votes in the preference test for the low-resource TTS with only 15 minutes of paired data.Comment: Submitted to ICASSP 202

    Poly[bis­(4,4′-bipyridine)(μ3-4,4′-dicarboxybiphenyl-3,3′-di­carboxyl­ato)iron(II)]

    Get PDF
    In the polymeric title complex, [Fe(C16H8O8)(C10H8N2)2]n, the iron(II) cation is coordinated by four O atoms from three different 4,4′-dicarboxybiphenyl-3,3′-di­carboxyl­ate ligands and two N atoms from two 4,4′-bipyridine ligands in a distorted octa­hedral geometry. The 4,4′-dicarboxybiphenyl-3,3′-di­carboxyl­ate ligands bridge adjacent cations, forming chains parallel to the c axis. The chains are further connected by inter­molecular O—H⋯N hydrogen bonds, forming two-dimensional supra­molecular layers parallel to (010)

    Topological sound

    Get PDF
    Recently, we witnessed a tremendous effort to conquer the realm of acoustics as a possible playground to test with topologically protected sound wave propagation. In this article, we review the latest efforts to explore with sound waves topological states of quantum matter in two- and three-dimensional systems where we discuss how spin and valley degrees of freedom appear as highly novel ingredients to tailor the flow of sound in the form of one-way edge modes and defect-immune protected acoustic waves. Both from a theoretical stand point and based on contemporary experimental verifications, we summarize the latest advancements of the flourishing research frontier on topological sound.X.J.Z. and L.M.H. are supported by the National Natural Science Foundation of China (Grant No. 11625418 and No. 51732006). M.X. is supported by the U. S. National Science Foundation (Grant No. CBET-1641069). Y.C. acknowledges the support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 11834008,11874215, 11674172, and 11574148) and from the National Basic Research Program of China (Grant No. 2017YFA0303702). J.C. acknowledges the support from the European Research Council (ERC) through the Starting Grant No. 714577 PHONOMETA and from the MINECO through a Ramón y Cajal grant (Grant No. RYC-2015-17156

    The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    Get PDF
    Abiotic stresses such as high temperature, salinity and drought adversely affect the survival, growth and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention

    MicroRNAs in Human Pituitary Adenomas

    Get PDF
    MicroRNAs (miRNAs) are a class of recently identified noncoding RNAs that regulate gene expression at posttranscriptional level. Due to the large number of genes regulated by miRNAs, miRNAs play important roles in many cellular processes. Emerging evidence indicates that miRNAs are dysregulated in pituitary adenomas, a class of intracranial neoplasms which account for 10–15% of diagnosed brain tumors. Deregulated miRNAs and their targets contribute to pituitary adenomas progression and are associated with cell cycle control, apoptosis, invasion, and pharmacological treatment of pituitary adenomas. To provide an overview of miRNAs dysregulation and functions of these miRNAs in pituitary adenoma progression, we summarize the deregulated miRNAs and their targets to shed more light on their potential as therapeutic targets and novel biomarkers

    Theory of d+idd + id Second-Order Topological Superconductors

    Full text link
    Topological superconductors are a class of unconventional superconducting materials featuring sub-gap zero-energy Majorana bound modes that hold promise as a building block for topological quantum computing. In this work, we study the realization of second-order topology that defines anomalous gapless boundary modes in a two-orbital superconductor with spin-orbital couplings. We reveal a time-reversal symmetry-breaking second-order topological superconducting phase with d+idd+id-wave orbital-dependent paring without the need for the external magnetic field. Remarkably, this orbital-active dd-wave paring gives rise to anomalous zero-energy Majorana corner modes, which is in contrast to conventional chiral dd-wave pairing, accommodating one-dimensional Majorana edge modes. Our work not only reveals a unique mechanism of time-reversal symmetry breaking second-order topological superconductors but also bridges the gap between second-order topology and orbital-dependent pairings.Comment: 5+ pages, 5 figure

    Alterations in microRNA expression profiles in inflamed and non-inflamed ascending colon mucosae of patients with active Crohn's disease

    Get PDF
    Background and aims The miRNA expression profiles of the terminal ileum, sigmoid colon, and rectal mucosa of adult patients with active Crohn';s disease (CD) have been previously reported. The purpose of this study was to identify dysregulated miRNAs in the mucosa of the ascending colon. Methods Biopsy tissue samples were taken from the mucosae of inflammatory (iCD) or non-inflammatory (niCD) areas of the ascending colons of adult patients with active CD. miRNA and mRNA expression profiles were detected using microarray analyses. miRNAs and mRNAs demonstrating significant differences were validated via quantitative real-time PCR (qRT-PCR). Luciferase reporter genes were used to measure two miRNAs inhibition of potential target genes in human 293T cells in vitro. Results Compared with the HC group, the ascending colon miRNA expression profiles revealed that 43 miRNAs were significantly up-regulated and 35 were down-regulated in the iCD group. The mRNA expression profiles indicated that 3,370 transcripts were significantly differentially expressed in the ascending colon, with 2169 up-regulated and 1201 down-regulated mRNAs in the iCD group, and only 20 miRNAs demonstrated significant differential expression in the niCD group. In contrast, nearly 100 miRNAs significantly varied between the iCD and niCD groups. Finally, luciferase reporter gene assays showed that hsa-miR-16-1 directly regulated the human C10orf54 gene and that they were negatively correlated. Conclusions Our results indicated that the differentially expressed miRNAs and mRNAs were related to immune inflammation and intestinal flora. The data provide preliminary evidence that the occurrence of CD involves the inhibition of C10orf54 expression by hsa-miR-16-1
    corecore