105 research outputs found

    4-[(7-Fluoro­quinazolin-4-yl)­oxy]aniline

    Get PDF
    In the mol­ecule of the title compound, C14H10FN3O, the bicyclic quinazoline system is effectively planar, with a mean deviation from planarity of 0.0140 (3) Å. The quinazoline heterocyclic system and the adjacent benzene ring make a dihedral angle of 85.73 (9)°. Two inter­molecular N—H⋯N hydrogen bonds contribute to the stability of the crystal structure. In addition, a weak π–π stacking inter­action [centroid–centroid distance = 3.902 (2) Å] is observed

    The importance of NOx control for peak ozone mitigation based on a sensitivity study using CMAQ‐HDDM‐3D model during a typical episode over the Yangtze River delta region, China.

    Get PDF
    In recent years, ground-level ozone (O3) has been one of the main pollutants hindering air quality compliance in China's large city-clusters including the Yangtze River Delta (YRD) region. In this work, we utilized the process analysis (PA) and the higher-order decoupled direct method (HDDM-3D) tools embedded in the Community Multiscale Air Quality model (CMAQ) to characterize O3 formation and sensitivities to precursors during a typical O3 pollution episode over the YRD region in July 2018. Results indicate that gas-phase chemistry contributed dominantly to the ground-level O3 although a significant proportion was chemically produced at the middle and upper boundary layer before reaching the surface via diffusion process. Further analysis of the chemical pathways of O3 and Ox formation provided deep insights into the sensitivities of O3 to its precursors that were consistent with the HDDM results. The first-order sensitivities of O3 to anthropogenic volatile organic compounds (AVOC) were mainly positive but small, and temporal variations were negligible compared with those to NOx. During the peak O3 time in the afternoon, the first- and second-order sensitivities of O3 to NOx were significantly positive and negative, respectively, suggesting a convex response of O3 to NOx over most areas including Shanghai, Hangzhou, Nanjing and Hefei. These findings further highlighted an accelerated decrease in ground-level O3 in the afternoon corresponding to continuous decrease of NOx emissions in the afternoon. Therefore, over the YRD region including its metropolises, NOx emission reductions will be more important in reducing the afternoon peak O3 concentration compared with the effect of VOC emission control alone

    Soil’s Hidden Power : The Stable Soil Organic Carbon Pool Controls the Burden of Persistent Organic Pollutants in Background Soils

    Get PDF
    Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air–surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Discovery of the New UHP Eclogite from the East Kunlun, Northwestern China, and Its Tectonic Significance

    No full text
    The East Kunlun Orogenic Belt (EKOB), northwestern China, recording long-term and multiple accretionary and collisional events of the Tethyan Ocean, belongs to a high-pressure to ultra-high-pressure (HP-UHP) metamorphic belt that underwent complex metamorphic overprinting in the early Paleozoic. In this contribution, we carry out an integrated study, including field investigations, petrographic observations, whole-rock analyses, zircon U-Pb dating, and P-T condition modeling using THERMOCALC in the NCKFMASHTO system for the eclogites, especially for the newly discovered UHP eclogite in the eastern part of EKOB. The eclogites exhibit geochemistry ranging from normal mid-ocean ridge basalt (N-MORB) to enriched mid-ocean ridge basalt (E-MORB). Zircons from the eclogites yield metamorphic ages of 416–413 Ma, indicating the eclogite facies metamorphism. Coesite inclusions in garnet and omphacite and quartz exsolution in omphacite and pseudosection calculation suggest that some eclogites experienced UHP eclogite facies metamorphism. The eclogites from the eastern part of EKOB record peak conditions of 29–33 kbar/705–760 °C, first retrograde conditions of 10 kbar at 9.5–12.5 kbar/610–680 °C, and second retrograde conditions at ~6 kbar/<600 °C. New evidence of the early Paleozoic UHP metamorphism in East Kunlun is identified in our study. Thus, we suggest that these eclogites were produced by the oceanic crust subducting to the depth of 100 km and exhumation. The presence of East Gouli and Gazhima eclogites in this study and other eclogites (430–414 Ma) in East Kunlun record the final closure of the local branch ocean of the Proto-Tethys and the evolution from subduction to collision
    • 

    corecore