127 research outputs found

    Carbon Stocks across a Fifty Year Chronosequence of Rubber Plantations in Tropical China

    Get PDF
    Transition from forest to rubber (Hevea brasiliensis Muell. Arg.) plantation has occurred in tropical China for decades. Rubber has been planted on 1 million ha to provide raw materials to the rubber industry. The role of various-aged rubber plantations in carbon (C) sequestration remains unclear. The biomass C accumulation including latex C and C distribution in soil of five different-aged stands (7, 13, 19, 25 and 47 years old) were examined. The total biomass C stock (TBC) and total net primary productivity (NPPtotal), whether with or without latex C, had a close quadratic relationship with stand age. Regardless of stand age, around 68% of the C was stored in aboveground biomass, and NPPlatex contributed to approximately 18% of C sequestration. Soil organic carbon stock in the 100-cm depth remained relatively stable, but it lost about 16.8 Mg ha−1 with stand age. The total ecosystem C stock (TEC) across stands averaged 159.6, 174.4, 229.6, 238.1 and 291.9 Mg ha−1, respectively, of which more than 45% was stored in the soil. However, biomass would become the major C sink rather than soil over a maximal rubber life expectancy. Regression analysis showed that TEC for rubber plantation at 22 years is comparable to a baseline of 230.4 Mg ha−1 for tropical forest in China, and would reach the maximum value at around 54 years. Therefore, rubber plantation can be considered as alternative land use without affecting net forest ecosystem C storage. In addition to the potential C gains, a full set of ecosystem and economic properties have to be quantified in order to assess the trade-offs associated with forest-to-rubber transition

    Early-Warning and Risk Prevention of Sovereign Credit Rating Downgrades -- Empirical Test from 35 Country Panel Data

    Get PDF
    European debt crisis has seriously affected the global economy, and sovereign credit rating downgrades further affect a country’s debt crisis and a country’s as well as the global economy. Through the establishment of the panel data Logit model, combined with the 35 country panel data, this paper does an early warning of sovereign credit rating downgrades, analyzes the impact of various factors on the sovereign credit rating downgrades. The results of early warning show that, external debt, short-term non-normal substantial growth of budget deficit will increase the possibility of sovereign credit rating downgrades and government efficiency, and the impact of external debt is larger than budget deficit. The government efficiency, per capita GDP, the short-term improvement of foreign exchange reserves will inhibit the reduction in rating downgrades and the per capita GDP inhibits better.Key words: Sovereign credit ratings; Influencing factors; Panel Data Logit model; Early-warning analysis; Risk preventio

    Galaxy-galaxy weak-lensing measurement from SDSS: II. host halo properties of galaxy groups

    Get PDF
    As the second paper of a series on studying galaxy-galaxy lensing signals using the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), we present our measurement and modelling of the lensing signals around groups of galaxies. We divide the groups into four halo mass bins, and measure the signals around four different halo-center tracers: brightest central galaxy (BCG), luminosity-weighted center, number-weighted center and X-ray peak position. For X-ray and SDSS DR7 cross identified groups, we further split the groups into low and high X-ray emission subsamples, both of which are assigned with two halo-center tracers, BCGs and X-ray peak positions. The galaxy-galaxy lensing signals show that BCGs, among the four candidates, are the best halo-center tracers. We model the lensing signals using a combination of four contributions: off-centered NFW host halo profile, sub-halo contribution, stellar contribution, and projected 2-halo term. We sample the posterior of 5 parameters i.e., halo mass, concentration, off-centering distance, sub halo mass, and fraction of subhalos via a MCMC package using the galaxy-galaxy lensing signals. After taking into account the sampling effects (e.g. Eddington bias), we found the best fit halo masses obtained from lensing signals are quite consistent with those obtained in the group catalog based on an abundance matching method, except in the lowest mass bin. Subject headings: (cosmology:) gravitational lensing, galaxies: clusters: generalComment: 12 pages, 7 figures, submitted to Ap

    MPprimer: a program for reliable multiplex PCR primer design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer) in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility.</p> <p>Results</p> <p>A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs) for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2× to 5× plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy), which has 79 exons, for 20×, 20×, 20×, 14×, and 5× plex PCR reactions in five tubes to detect underlying exon deletions.</p> <p>Conclusions</p> <p>MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.</p

    Photosynthetic Bacterium \u3cem\u3eRhodopseudomonas palustris\u3c/em\u3e GJ-22 Induces Systemic Resistance Against Viruses

    Get PDF
    Photosynthetic bacteria (PSB) have been extensively used in agriculture to promote plant growth and to improve crop quality. Their potential application in plant disease management, however, is largely overlooked. In this study, the PSB strain Rhodopseudomonas palustris GJ-22 was investigated for its ability to induce resistance against a plant virus while promoting plant growth. In the field, a foliar spray of GJ-22 suspension protected tobacco plants against tobacco mosaic virus (TMV). Under axenic conditions, GJ-22 colonized the plant phyllosphere and induced resistance against TMV. Additionally, GJ-22 produced two phytohormones, indole-3-acetic acid and 5-aminolevulinic acid, which promote growth and germination in tobacco. Furthermore, GJ-22-inoculated plants elevated their immune response under subsequent TMV infection. This research may give rise to a novel biological agent with a dual function in disease management while promoting plant growth

    Mechanistic study of visible light-driven CdS or g-C<sub>3</sub>N<sub>4</sub>-catalyzed C–H direct trifluoromethylation of (hetero)arenes using CF<sub>3</sub>SO<sub>2</sub>Na as the trifluoromethyl source

    Get PDF
    The mild and sustainable methods for C–H direct trifluoromethylation of (hetero)arenes without any base or strong oxidants are in extremely high demand. Here, we report that the photo-generated electron-hole pairs of classical semiconductors (CdS or g-C3N4) under visible light excitation are effective to drive C–H trifluoromethylation of (hetero)arenes with stable and inexpensive CF3SO2Na as the trifluoromethyl (TFM) source via radical pathway. Either CdS or g-C3N4 propagated reaction can efficiently transform CF3SO2Na to [rad]CF3 radical and further afford the desired benzotrifluoride derivatives in moderate to good yields. After visible light initiated photocatalytic process, the key elements (such as F, S and C) derived from the starting TFM source of CF3SO2Na exhibited differential chemical forms as compared to those in other oxidative reactions. The photogenerated electron was trapped by chemisorbed O2 on photocatalysts to form superoxide radical anion (O2[rad]−) which will further attack [rad]CF3 radical with the generation of inorganic product F− and CO2. This resulted in a low utilization efficiency of [rad]CF3 (&lt;50%). When nitro aromatic compounds and CF3SO2Na served as the starting materials in inert atmosphere, the photoexcited electrons can be directed to reduce the nitro group to amino group rather than being trapped by O2. Meanwhile, the photogenerated holes oxidize SO2CF3− into [rad]CF3. Both the photogenerated electrons and holes were engaged in reductive and oxidative paths, respectively. The desired product, trifluoromethylated aniline, was obtained successfully via one-pot free-radical synthesis.</p

    Enhancing Human Activity Recognition in Wrist-Worn Sensor Data Through Compensation Strategies for Sensor Displacement

    Get PDF
    Human Activity Recognition (HAR) using wearable sensors, particularly wrist-worn devices, has garnered significant research interest. However, challenges such as sensor displacement and variations in wearing habits can affect the accuracy of HAR systems. Two compensation stratigies for sensor displacemnt are proposed to address these issues. The first strategy is hybrid data fusion, which involves merging sensor data collected from different displacement locations on the wrist. This technique aims to mitigate the discrepancies in data distribution that result from the multiple wearing positions along the wrist, thereby enhancing the overall accuracy of HAR models. The second strategy is cross-location transfer fine-tuning, which involves pretraining a model with data from typical wrist locations and then fine-tuning it with data from a new sensor location. This approach improves the model’s ability to adapt and perform accurately when the sensor is placed in a different position, significantly enhancing its performance and generalization capabilities. To verify the effectiveness of these proposed compensation strategies, we built an LSTM baseline model and introduce a new Multi-stage Feature Extraction (MSFE) model that integrates 1D CNN and attention. Experiments on common activities such as walking, standing, using stairs, and lying down, with data recorded at multiple locations along the wrist, have shown that both hybrid data fusion and cross-location transfer fine-tuning strategies notably improve the recognition accuracy of HAR models. The proposed MSFE model achieves higher recognition accuracies than the LSTM model in all six experimental scenarios, particularly in Scenario 5 involving sensor displacement, with an improvement of up to 31.65%. Additionally, thecross-location transfer fine-tuning strategy enhances the recognition accuracy by 9.19% for Subject 3 with sensor displacement at the right wrist location. These advancements in handling sensor displacement and wearing variations are crucial for developing more reliable and versatile wearable technologies

    Clinical characteristics and risk factors associated with ICU-acquired infections in sepsis: A retrospective cohort study

    Get PDF
    Intensive care unit (ICU)-acquired infection is a common cause of poor prognosis of sepsis in the ICU. However, sepsis-associated ICU-acquired infections have not been fully characterized. The study aims to assess the risk factors and develop a model that predicts the risk of ICU-acquired infections in patients with sepsis.MethodsWe retrieved data from the Medical Information Mart for Intensive Care (MIMIC) IV database. Patients were randomly divided into training and validation cohorts at a 7:3 ratio. A multivariable logistic regression model was used to identify independent risk factors that could predict ICU-acquired infection. We also assessed its discrimination and calibration abilities and compared them with classical score systems.ResultsOf 16,808 included septic patients, 2,871 (17.1%) developed ICU-acquired infection. These patients with ICU-acquired infection had a 17.7% ICU mortality and 31.8% in-hospital mortality and showed a continued rise in mortality from 28 to 100 days after ICU admission. The classical Systemic Inflammatory Response Syndrome Score (SIRS), Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS), Simplified Acute Physiology Score II (SAPS II), Logistic Organ Dysfunction Score (LODS), Charlson Comorbidity Index (CCI), and Acute Physiology Score III (APS III) scores were associated with ICU-acquired infection, and cerebrovascular insufficiency, Gram-negative bacteria, surgical ICU, tracheostomy, central venous catheter, urinary catheter, mechanical ventilation, red blood cell (RBC) transfusion, LODS score and anticoagulant therapy were independent predictors of developing ICU-acquired infection in septic patients. The nomogram on the basis of these independent predictors showed good calibration and discrimination in both the derivation (AUROC = 0.737; 95% CI, 0.725–0.749) and validation (AUROC = 0.751; 95% CI, 0.734–0.769) populations and was superior to that of SIRS, SOFA, OASIS, SAPS II, LODS, CCI, and APS III models.ConclusionsICU-acquired infections increase the likelihood of septic mortality. The individualized prognostic model on the basis of the nomogram could accurately predict ICU-acquired infection and optimize management or tailored therapy
    • …
    corecore