3,752 research outputs found
Towards Effective Online Learning Implementation in Tanzanian Higher Learning Institutions: Obstacles, Challenges and Opportunities
This paper identifies and discusses several influential factors as well as opportunities, associated with effective- online learning implementation in Tanzanian Higher Learning Institutions (THUs). Fourteen (14) THUs were surveyed, using face-to-face interviews in focus groups. The groups included Lecturers, Heads of ICT Departments, ICT Technical Personnel as well as Admi/:listrative Staff. Results indicate that mostly, problems with effective online implementation in THUs are centred on a severe scarcity of online resources and tools and that the main challenges lie in going beyond the process of integrating technology with their teaching curricular, so that training of both teaching and supporting staffs also poses a big challenge in the process. In addition, opportunities for e-learning are totally unexplored because of the low pace of THUs' online learning practices. In this respect, THUs are required to devise and implement clear and welldefined e-learning strategies before they can move a step further
Recommended from our members
Green cell planning and deployment for small cell networks in smart cities
In smart cities, cellular network plays a crucial role to support wireless access for numerous devices anywhere and anytime. The future 5G network aims to build the infrastructure from mobile internet to connected world. Small Cell is one of the most promising technologies of 5G to provide more connections and high data rate. In order to make the best use of small cell technology, smart cell planning should be implemented to guarantee connectivity and performance for all end nodes. It is particularly a challenging task to deploy dense small cells in the presence of dynamic traffic demands and severe co-channel interference. In this paper, we model various traffic patterns using stochastic geometry approach and propose an energy-efficient scheme to deploy and plan small cells according to the prevailing traffic pattern. The simulation results indicate that our scheme can meet dynamic traffic demands with optimized deployment of small cells and enhance the energy efficiency of the system without compromising on quality-of-service (QoS) requirements. In addition, our scheme can achieve very close performance compared with the leading optimization solver CPLEX and find solutions in much less computational times than CPLEX
Brownian motion of solitons in a Bose-Einstein Condensate
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated 87 Rb Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one-dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton\u27s diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment
Doped graphene nanohole arrays for flexible transparent conductors
Graphene nanohole arrays (GNAs) were fabricated using nanoimprint lithography. The improved optical transmittance of GNAs is primarily due to the reduced surface coverage of graphene from the nanohole fabrication. Importantly, the exposed edges of the nanoholes provided effective sites for chemical doping using thionyl chloride was shown to enhance the conductance by a factor of 15–18 in contrast to only 2-4 for unpatterned graphene. GNAs can provide a unique scheme for improving both optical transmittance and electrical conductivity of graphene-based transparent conductors
Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134871/1/mp8694.pd
Loss-of-function mutations in Lysyl-tRNA synthetase cause various leukoencephalopathy phenotypes
Objective: To expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene–related diseases, which so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly, and nonsyndromic hearing impairment.
Methods: Whole-exome sequencing was performed on index patients from 4 unrelated families with leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed by Sanger sequencing. Effects of mutations on KARS protein function were examined by aminoacylation assays and yeast complementation assays.
Results: Common clinical features of the patients in this study included impaired cognitive ability, seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is the main clinical presentation. Six previously unreported and 1 known KARS mutations were identified and cosegregated in these families. Two patients are compound heterozygous for missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored an insertion mutation and a missense mutation. Functional and structural analyses revealed that these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that de- fective KARS function is responsible for the phenotypes in these individuals.
Conclusions: Our results demonstrate that patients with loss-of-function KARS mutations can manifest CNS disorders, thus broadening the phenotypic spectrum associated with KARS-related disease
- …