5,004 research outputs found

    ¿Adónde va la pedagogía social? Exaptation como modelo pedagógico de desarrollo en la era de la crisis global

    Get PDF
    Aquest article parteix de la pregunta de quin és el paper de la pedagogia social a la primera meitat del segle XXI i la resposta que pretén mostrar és l’ús del terme exaptation a través de l’educació en tot àmbit de la sociabilitat. L’objectiu és evidenciar i descobrir la possibilitat o la manera de ser diferent a través de l’educació. Es tracta d’apreciar la responsabilitat de saber estar al món en relació amb els altres, en un procés d’adaptació constructiva i creativa que té en compte els vincles i la reciprocitat en la precarietat de la realitat d’avui en dia. El procés que suposa el terme exaptation és activat per la dinàmica de la necessitat i del desig a través de la figura de l’educador. Al llarg del text s’analitzen alguns fenòmens socials en els quals sembla produir-se espontàniament un procés d’exaptation, del qual no hi ha encara un terme comprensiu en el lèxic pedagògic. Precisament perquè es configura com a denominació d’un procés que connota la naturalesa de l’actuació pedagògico-social, es considera que pot contribuir a definir l’estatut epistemològic de la disciplina.This article starts from the question of the role of social pedagogy in the first half of the 21st century, and the response it seeks to show is the use of the term ‘exaptation’ in education in all areas of sociability. The aim is to identify and explore the possibility or the way of being different through education, as a matter of appreciating the responsibility of being in the world in relation to others, in a process of constructive and creative adaptation that takes into account the importance of links and reciprocity in today’s precarious reality. The process described by the term ‘exaptation’ is activated by the dynamics of need and desire through the figure of the educator. The article goes on to analyse a number of social phenomena in which there appears to be a spontaneous process of exaptation, for which there is as yet no comprehensive term in the vocabulary of pedagogy. Precisely because it is configured as a denomination of a process that connotes the nature of the social-pedagogicalaction, we believe it can help to define the epistemological status of the discipline.Este artículo parte de la pregunta de cuál es el papel de la pedagogía social en la primera mitad del siglo XXI y la respuesta que pretende mostrar es el empleo del término exaptation a través de la educación en todo ámbito de la sociabilidad. El objetivo es evidenciar y descubrir la posibilidad o la manera de ser diferente a través de la educación. Se trata de apreciar la responsabilidad de saber estar en el mundo en relación con los demás, en un proceso de adaptación constructiva y creativa que tiene en cuenta los vínculos y la reciprocidad en la precariedad de la realidad de hoy día. El proceso que supone el término exaptation es activado por la dinámica de la necesidad y del deseo a través de la figura del educador. A lo largo del texto se analizan algunos fenómenos sociales en los cuales parece producirse espontáneamente un proceso de exaptation, del cual no existe aún un término comprensivo en el léxico pedagógico. Precisamente debido a que se configura como denominación de un proceso que connota la naturaleza de la actuación pedagógico-social, se considera que puede contribuir a definir el estatuto epistemológico de la disciplina

    Accurate Profiling of Microbial Communities from Massively Parallel Sequencing using Convex Optimization

    Full text link
    We describe the Microbial Community Reconstruction ({\bf MCR}) Problem, which is fundamental for microbiome analysis. In this problem, the goal is to reconstruct the identity and frequency of species comprising a microbial community, using short sequence reads from Massively Parallel Sequencing (MPS) data obtained for specified genomic regions. We formulate the problem mathematically as a convex optimization problem and provide sufficient conditions for identifiability, namely the ability to reconstruct species identity and frequency correctly when the data size (number of reads) grows to infinity. We discuss different metrics for assessing the quality of the reconstructed solution, including a novel phylogenetically-aware metric based on the Mahalanobis distance, and give upper-bounds on the reconstruction error for a finite number of reads under different metrics. We propose a scalable divide-and-conquer algorithm for the problem using convex optimization, which enables us to handle large problems (with 106\sim10^6 species). We show using numerical simulations that for realistic scenarios, where the microbial communities are sparse, our algorithm gives solutions with high accuracy, both in terms of obtaining accurate frequency, and in terms of species phylogenetic resolution.Comment: To appear in SPIRE 1

    Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients.

    Get PDF
    Differences in the gut microbiota have been reported between individuals with autism spectrum disorders (ASD) and neurotypical controls, although direct evidence that changes in the microbiome contribute to causing ASD has been scarce to date. Here we summarize some considerations of experimental design that can help untangle causality in this complex system. In particular, large cross-sectional studies that can factor out important variables such as diet, prospective longitudinal studies that remove some of the influence of interpersonal variation in the microbiome (which is generally high, especially in children), and studies transferring microbial communities into germ-free mice may be especially useful. Controlling for the effects of technical variables, which have complicated efforts to combine existing studies, is critical when biological effect sizes are small. Large citizen-science studies with thousands of participants such as the American Gut Project have been effective at uncovering subtle microbiome effects in self-collected samples and with self-reported diet and behavior data, and may provide a useful complement to other types of traditionally funded and conducted studies in the case of ASD, especially in the hypothesis generation phase

    Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives

    Get PDF
    The mammalian gut is an attractive model for exploring the general question of how habitat impacts the evolution of gene content. Therefore, we have characterized the relationship between 16 S rRNA gene sequence similarity and overall levels of gene conservation in four groups of species: gut specialists and cosmopolitans, each of which can be divided into pathogens and non-pathogens. At short phylogenetic distances, specialist or cosmopolitan bacteria found in the gut share fewer genes than is typical for genomes that come from non-gut environments, but at longer phylogenetic distances gut bacteria are more similar to each other than are genomes at equivalent evolutionary distances from non-gut environments, suggesting a pattern of short-term specialization but long-term convergence. Moreover, this pattern is observed in both pathogens and non-pathogens, and can even be seen in the plasmids carried by gut bacteria. This observation is consistent with the finding that, despite considerable interpersonal variation in species content, there is surprising functional convergence in the microbiome of different humans. Finally, we observe that even within bacterial species or genera 16S rRNA divergence provides useful information about average conservation of gene content. The results described here should be useful for guiding strain selection to maximize novel gene discovery in large-scale genome sequencing projects, while the approach could be applied in studies seeking to understand the effects of habitat adaptation on genome evolution across other body habitats or environment types

    Bacterial communities vary between sinuses in chronic rhinosinusitis patients

    Get PDF
    Chronic rhinosinusitis (CRS) is a common and potentially debilitating disease characterized by inflammation of the sinus mucosa for longer than 12 weeks. Bacterial colonization of the sinuses and its role in the pathogenesis of this disease is an ongoing area of research. Recent advances in culture-independent molecular techniques for bacterial identification have the potential to provide a more accurate and complete assessment of the sinus microbiome, however there is little concordance in results between studies, possibly due to differences in the sampling location and techniques. This study aimed to determine whether the microbial communities from one sinus could be considered representative of all sinuses, and examine differences between two commonly used methods for sample collection, swabs, and tissue biopsies. High-throughput DNA sequencing of the bacterial 16S rRNA gene was applied to both swab and tissue samples from multiple sinuses of 19 patients undergoing surgery for treatment of CRS. Results from swabs and tissue biopsies showed a high degree of similarity, indicating that swabbing is sufficient to recover the microbial community from the sinuses. Microbial communities from different sinuses within individual patients differed to varying degrees, demonstrating that it is possible for distinct microbiomes to exist simultaneously in different sinuses of the same patient. The sequencing results correlated well with culture-based pathogen identification conducted in parallel, although the culturing missed many species detected by sequencing. This finding has implications for future research into the sinus microbiome, which should take this heterogeneity into account by sampling patients from more than one sinus

    Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution

    Full text link
    The standard approach to analyzing 16S tag sequence data, which relies on clustering reads by sequence similarity into Operational Taxonomic Units (OTUs), underexploits the accuracy of modern sequencing technology. We present a clustering-free approach to multi-sample Illumina datasets that can identify independent bacterial subpopulations regardless of the similarity of their 16S tag sequences. Using published data from a longitudinal time-series study of human tongue microbiota, we are able to resolve within standard 97% similarity OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S tags differing by as little as 1 nucleotide (99.2% similarity). A comparative analysis of oral communities of two cohabiting individuals reveals that most such subpopulations are shared between the two communities at 100% sequence identity, and that dynamical similarity between subpopulations in one host is strongly predictive of dynamical similarity between the same subpopulations in the other host. Our method can also be applied to samples collected in cross-sectional studies and can be used with the 454 sequencing platform. We discuss how the sub-OTU resolution of our approach can provide new insight into factors shaping community assembly.Comment: Updated to match the published version. 12 pages, 5 figures + supplement. Significantly revised for clarity, references added, results not change

    Dormant Mycobacterium tuberculosis fails to block phagosome maturation and shows unexpected capacity to stimulate specific human T lymphocytes

    Get PDF
    Dormancy is defined as a stable but reversible nonreplicating state of Mycobacterium tuberculosis. It is currently thought that dormant M. tuberculosis (D-Mtb) is responsible for latent tuberculosis (TB) infection. Recently, D-Mtb was also shown in sputa of patients with active TB, but the capacity of D-Mtb to stimulate specific immune responses was not investigated. We observed that purified protein derivative-specific human CD4(+) T lymphocytes recognize mycobacterial Ags more efficiently when macrophages are infected with D-Mtb instead of replicating M. tuberculosis (R-Mtb). The different Ag recognition occurs even when the two forms of mycobacteria equally infect and stimulate macrophages, which secrete the same cytokine pattern and express MHC class I and II molecules at the same levels. However, D-Mtb but not R-Mtb colocalizes with mature phagolysosome marker LAMP-1 and with vacuolar proton ATPase in macrophages. D-Mtb, unlike R-Mtb, is unable to interfere with phagosome pH and does not inhibit the proteolytic efficiency of macrophages. We show that D-Mtb downmodulates the gene Rv3875 encoding for ESAT-6, which is required by R-Mtb to block phagosome maturation together with Rv3310 gene product SapM, previously shown to be downregulated in D-Mtb. Thus, our results indicate that D-Mtb cannot escape MHC class II Ag-processing pathway because it lacks the expression of genes required to block the phagosome maturation. Data suggest that switching to dormancy not only represents a mechanism of survival in latent TB infection, but also a M. tuberculosis strategy to modulate the immune response in different stages of TB

    Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences

    Get PDF
    We present a performance-optimized algorithm, subsampled open-reference OTU picking, for assigning marker gene (e.g., 16S rRNA) sequences generated on next-generation sequencing platforms to operational taxonomic units (OTUs) for microbial community analysis. This algorithm provides benefits over de novo OTU picking (clustering can be performed largely in parallel, reducing runtime) and closed-reference OTU picking (all reads are clustered, not only those that match a reference database sequence with high similarity). Because more of our algorithm can be run in parallel relative to “classic” open-reference OTU picking, it makes open-reference OTU picking tractable on massive amplicon sequence data sets (though on smaller data sets, “classic” open-reference OTU clustering is often faster). We illustrate that here by applying it to the first 15,000 samples sequenced for the Earth Microbiome Project (1.3 billion V4 16S rRNA amplicons). To the best of our knowledge, this is the largest OTU picking run ever performed, and we estimate that our new algorithm runs in less than 1/5 the time than would be required of “classic” open reference OTU picking. We show that subsampled open-reference OTU picking yields results that are highly correlated with those generated by “classic” open-reference OTU picking through comparisons on three well-studied datasets. An implementation of this algorithm is provided in the popular QIIME software package, which uses uclust for read clustering. All analyses were performed using QIIME’s uclust wrappers, though we provide details (aided by the open-source code in our GitHub repository) that will allow implementation of subsampled open-reference OTU picking independently of QIIME (e.g., in a compiled programming language, where runtimes should be further reduced). Our analyses should generalize to other implementations of these OTU picking algorithms. Finally, we present a comparison of parameter settings in QIIME’s OTU picking workflows and make recommendations on settings for these free parameters to optimize runtime without reducing the quality of the results. These optimized parameters can vastly decrease the runtime of uclust-based OTU picking in QIIME

    Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts

    Get PDF
    We lack a deep understanding of genetic and metabolic attributes specializing in microbial consortia for initial and subsequent waves of colonization of our body habitats. Here we show that phylogenetically interspersed bacteria in Clostridium cluster XIVa, an abundant group of bacteria in the adult human gut also known as the Clostridium coccoides or Eubacterium rectale group, contains species that have evolved distribution patterns consistent with either early successional or stable gut communities. The species that specialize to the infant gut are more likely to associate with systemic infections and can reach high abundances in individuals with Inflammatory Bowel Disease (IBD), indicating that a subset of the microbiota that have adapted to pioneer/opportunistic lifestyles may do well in both early development and with disease. We identified genes likely selected during adaptation to pioneer/opportunistic lifestyles as those for which early succession association and not phylogenetic relationships explain genomic abundance. These genes reveal potential mechanisms by which opportunistic gut bacteria tolerate osmotic and oxidative stress and potentially important aspects of their metabolism. These genes may not only be biomarkers of properties associated with adaptation to early succession and disturbance, but also leads for developing therapies aimed at promoting reestablishment of stable gut communities following physiologic or pathologic disturbances
    corecore