81 research outputs found

    Construction of PCR Test-System for Differentiation between Genetically Altered Toxigenic Vibrio cholerae Strains, Biovar El Tor, with Varied Epidemic Potential

    Get PDF
    Designed is a multi-locus PCR test-system that allows for differentiation between genetically altered Vibrio cholerae strains, biovar El Tor, with high and low epidemic potential respectively, based on identification of genetic marker structure in the agent of the seventh cholera pandemic - pandemicity island VSP-II. In the course of investigations selected have been three target genes allocated in the central region and terminal end of the mobile genetic element. This test-system offers the possibility to identify the strains containing intact VSP-II, the ones containing VSP-II with a short-length deletion, and the strains with VSP-II with extended deletion. The first two are classified as the variants with low epidemic potential, while the last ones - as the variants with high epidemic potential. Specificity and efficacy of the test-system is shown by the experiments with 28 toxigenic genetically altered V. cholerae strains, biovar El Tor, and 6 strains of closely related species and enterobacteria. The results obtained coincide with the data on mono-locus PCR assay and in a number of instances are verified by sequencing

    Prevalence of Different Types of Integrative Conjugative Element SXT/R391 Encoding Multiple Antibiotic Resistance Among Clinical Strains of Cholera Agent

    Get PDF
    The aim of the work was to study the prevalence of different types of SXT element with different composition of antibiotic resistance genes among clinical strains of the El Tor cholera pathogen isolated in Russia, Ukraine and cholera-endemic countries in Asia and Africa.Materials and methods. The subject of the study was 27 strains and nucleotide sequences of 77 strains of Vibrio cholerae El Tor available from the NCBI GenBank. The structure of the SXT element and its type were determined using the Mauve and BLAST v.2.9.0 programs. Phylogenetic relations of strains with different types of SXT were identified using Snippy v.4.6.0 and MrBayes v.3.2.7 software. Assessment of strain sensitivity to antibiotics was carried out in accordance with Methodological Regulations 4.2.2495-09.Results and discussion. Two types of SXT element (ICEVchInd5 and ICEVchBan9) have been identified among the studied strains from Russia and Ukraine, which have different composition of antibiotic resistance genes: floR, strAB, sul2, dfrA1 and floR, tetAR, strAB, sul2, dfrA1, respectively. At the same time, the studied strains from Asia and Africa contain five types of SXT: ICEVchInd5, ICEVchBan9, ICEVchBan5, SXTTET, ICEVchInd5ΔVRIII, which differ in size and/or composition of resistance genes. Of these, the last three have not been found in Russia and Ukraine. Due to the high level of genomic diversity of SXT in the population of V. cholerae in endemic regions, there is a risk of importation of cholera pathogen strains with altered resistance to antibiotics into Russia. Phylogenetic relations of 76 strains with different SXT types and different alleles of the ctxB gene encoding the B subunit of cholera toxin have been assessed based on SNP analysis. A close phylogenetic relation between strains with the same type of SXT isolated in Russia and Asian countries has been demonstrated, which confirms the importation of the causative agent of cholera with multiple resistance to antibiotics from this region and the need for constant monitoring of the sensitivity of V. cholerae to antimicrobial drugs

    EFFECT OF THE PROPHAGE CTXΦ DELETION UPON PHENOTYPIC PROPERTIES IN STRAINS OF VIBRIO CHOLERAE BIOVAR EL TOR, ASSOCIATED WITH VIRULENCE AND PERSISTENCE

    Get PDF
    Objective of the study is to evaluate the influence of CTXφ prophage deletion, which carries ctxAB genes, on phenotypical properties associated with pathogenicity or biofilm formation in non-toxigenic mutants. Materials and methods. Utilized have been the clinical strains of Vibrio cholerae biovar El Tor and their spontaneous non-toxigenic mutants that lost CTXφ prophage. Applied have been microbiological and biochemical methods, inoculation of model animals with cells of the strains under study. Results and conclusions. The results of comparative analysis of phenotypic properties in isogenic toxigenic and non-toxigenic strains of Vibrio cholerae biovar El Tor, which lost CTXφ prophage encoding the cholera toxin, are represented. It is established that the deletion of CTXφ prophage leads to the simultaneous change of several phenotypic properties associated with virulence (colonizing ability, production of soluble hemagglutinin/protease and heat labile hemolysin/cytolysin) and biofilm formation (motility, exopolysaccharide biosynthesis) in spontaneous non-toxigenic mutants. It is suggested that the reason for these phenotypic changes in the mutants might be the changes in activity of the related to each other regulatory genes controlling virulence and biofilm formation process in cholera agent

    SIT for African malaria vectors: Epilogue

    Get PDF
    As a result of increased support and the diligent application of new and conventional anti-malaria tools, significant reductions in malaria transmission are being accomplished. Historical and current evolutionary responses of vectors and parasites to malaria interventions demonstrate that it is unwise to assume that a limited suite of tools will remain effective indefinitely, thus efforts to develop new interventions should continue. This collection of manuscripts surveys the prospects and technical challenges for applying a novel tool, the sterile insect technique (SIT), against mosquitoes that transmit malaria. The method has been very successful against many agricultural pest insects in area-wide programs, but demonstrations against malaria vectors have not been sufficient to determine its potential relative to current alternatives, much of which will hinge ultimately upon cost. These manuscripts provide an overview of current efforts to develop SIT and identify key research issues that remain

    In vitro susceptibility to pyrimethamine of DHFR I164L single mutant Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, <it>Plasmodium falciparum </it>parasites bearing <it>Pfdhfr </it>I164L single mutation were found in Madagascar. These new mutants may challenge the use of antifolates for the intermittent preventive treatment of malaria during pregnancy (IPTp). Assays with transgenic bacteria suggested that I164L parasites have a wild-type phenotype for pyrimethamine but it had to be confirmed by testing the parasites themselves.</p> <p>Methods</p> <p>Thirty <it>Plasmodium falciparum </it>clinical isolates were collected in 2008 in the south-east of Madagascar. A part of <it>Pfdhfr </it>gene encompassing codons 6 to 206 was amplified by PCR and the determination of the presence of single nucleotide polymorphisms was performed by DNA sequencing. The multiplicity of infection was estimated by using an allelic family-specific nested PCR. Isolates that appeared monoclonal were submitted to culture adaptation. Determination of IC<sub>50s </sub>to pyrimethamine was performed on adapted isolates.</p> <p>Results</p> <p>Four different <it>Pfdhfr </it>alleles were found: the 164L single mutant-type (N = 13), the wild-type (N = 7), the triple mutant-type 51I/59R/108N (N = 9) and the double mutant-type 108N/164L (N = 1). Eleven out 30 (36.7%) of <it>P. falciparum </it>isolates were considered as monoclonal infection. Among them, five isolates were successfully adapted in culture and tested for pyrimethamine <it>in vitro </it>susceptibility. The wild-type allele was the most susceptible with a 50% inhibitory concentration (IC<sub>50</sub>) < 10 nM. The geometric mean of IC<sub>50 </sub>of the three I164L mutant isolates was 6-fold higher than the wild-type with 61.3 nM (SD = 3.2 nM, CI95%: 53.9-69.7 nM). These values remained largely below the IC<sub>50 </sub>of the triple mutant parasite (13,804 nM).</p> <p>Conclusion</p> <p>The IC<sub>50</sub>s of the I164L mutant isolates were significantly higher than those of the wild-type (6-fold higher) and close from those usually reported for simple mutants S108N (roughly10-fold higher than wild type). Given the observed values, the determination of IC<sub>50</sub>s directly on parasites did not confirm what has been found on transgenic bacteria. The prevalence increase of the <it>Pfdhfr </it>I164L single mutant parasite since 2006 could be explained by the selective advantage of this allele under sulphadoxine-pyrimethamine pressure. The emergence of highly resistant alleles should be considered in the future, in particular because an unexpected double mutant-type allele S108N/I164L has been already detected.</p

    Tenascin-C as a cardiovascular marker

    Get PDF
    Novel biological markers, such as fibrosis marker galectin-3, peptide hormone adrenomedullin, soluble ST2, chemokine CX3CL1, surrogate marker of vasopressin, and others, are every year one step closer to being introduced into health practice. Over the past decades, significant progress has been made in the study of cardiovascular biomarkers. A key moment was the introduction of deter mining the concentration of natriuretic peptides used as markers for the diagnostic and prognostic evaluation of patients with heart failure. Currently, in order to search for novel markers for early diagnosis and risk stratification, studies have been conducted on the analysis of promising inflammatory marker tenascin-C (TNC) in cardiovascular patients. Data have been obtained that allow us to consider TNC as a tool for risk stratification and assessment of cardiovascular disease prognosis. The combination of TNC with other biological markers, in particular brain natriuretic peptide, may improve prognostic power. Nevertheless, serial testing to assess the prognosis and effectiveness of ongoing treatment, including in the conditions of a multimarker model, requires further research

    Fitness Trade-Offs in the Evolution of Dihydrofolate Reductase and Drug Resistance in Plasmodium falciparum

    Get PDF
    Background: Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness. Methodology/Principal Findings: We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine. Conclusions/Significance: Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possibl

    Extended book review: Transnational trade unionism: dream and reality

    Get PDF
    Book review of : Reiner Tosstorff, The Red International of Labour Unions (RILU), 1920–1937, Leiden: Brill, 2016; 918 pp.: ISBN 9789004236646, (hbk); Chicago, IL: Haymarket Books, 2018; 918 pp.: ISBN 9781608468164, (pbk

    Identification of pyrimethamine- and chloroquine-resistant Plasmodium falciparum in Africa between 1984 and 1998: genotyping of archive blood samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the geographical distribution of drug resistance of <it>Plasmodium falciparum </it>is important for the effective treatment of malaria. Drug resistance has previously been inferred mainly from records of clinical resistance. However, clinical resistance is not always consistent with the parasite's genetic resistance. Thus, molecular identification of the parasite's drug resistance is required. In Africa, clinical resistance to pyrimethamine (Pyr) and chloroquine (CQ) was evident before 1980 but few studies investigating the genetic resistance to these drugs were conducted before the late 1990s. In this study, genotyping of genes involved in resistance to Pyr and CQ was performed using archive blood samples from Africa between 1984 and 1998.</p> <p>Methods</p> <p>Parasite DNA was extracted from <it>P. falciparum</it>-infected blood smears collected from travellers returning to Japan from Africa between 1984 and 1998. Genotypes of the dihydrofolate reductase gene (<it>dhfr</it>) and CQ-resistance transporter gene (<it>pfcrt) </it>were determined by polymerase chain reaction amplification and sequencing.</p> <p>Results</p> <p>Genotyping of <it>dhfr </it>and <it>pfcrt </it>was successful in 59 and 80 samples, respectively. One wild-type and seven mutant <it>dhfr </it>genotypes were identified. Three <it>dhfr </it>genotypes lacking the S108N mutation (NRSI, ICSI, IRSI; amino acids at positions 51, 59, 108, and 164 with mutations underlined) were highly prevalent before 1994 but reduced after 1995, accompanied by an increase in genotypes with the S108N mutation. The <it>dhfr </it>IRNI genotype was first identified in Nigeria in 1991 in the present samples, and its frequency gradually increased. However, two double mutants (ICNI and NRNI), the latter of which was exclusively found in West Africa, were more frequent than the IRNI genotype. Only two <it>pfcrt </it>genotypes were found, the wild-type and a Southeast Asian type (CVIET; amino acids at positions 72-76 with mutations underlined). The CVIET genotype was already present as early as 1984 in Tanzania and Nigeria, and appeared throughout Africa between 1984 and 1998.</p> <p>Conclusions</p> <p>This study is the first to report the molecular identification of Pyr- and CQ-resistant genotypes of <it>P. falciparum </it>in Africa before 1990. Genotyping of <it>dhfr </it>and <it>pfcrt </it>using archive samples has revealed new aspects of the evolutionary history of Pyr- and CQ-resistant parasites in Africa.</p

    A Remnant Planetary Core In The Hot-Neptune desert

    Get PDF
    The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune ‘desert’1,2 (a region in mass–radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b3, which is thought to have an unusually massive core, and recent discoveries such as LTT9779b4 and NGTS-4b5, on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune’s but an anomalously large mass of 39.1+2.7−2.6 Earth masses and a density of 5.2+0.7−0.8 grams per cubic centimetre, similar to Earth’s. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than 3.9+0.8−0.9 per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation6. Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet
    corecore