6 research outputs found

    Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage

    Get PDF
    This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage

    Advanced Modular Power Approach to Affordable, Supportable Space Systems

    Get PDF
    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture

    Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion

    Get PDF
    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years

    Development of Structural Energy Storage for Aeronautics Applications

    Get PDF
    The National Aeronautics and Space Administration (NASA) has identified Multifunctional Structures for High Efficiency Lightweight Load-bearing Storage (M-SHELLS) as critical to development of hybrid gas-electric propulsion for commercial aeronautical transport in the N+3 timeframe. The established goals include reducing emissions by 80 and fuel consumption by 60 from todays state of the art. The advancement will enable technology for NASA Aeronautics Research Mission Directorates (ARMD) Strategic Thrust 3 to pioneer big leaps in efficiency and environmental performance for ultra-efficient commercial transports, as well as Strategic Thrust 4 to pioneer low-carbon propulsion technology in the transition to that scheme. The M-SHELLS concept addresses the hybrid gas-electric highest risk with its primary objective: to save structures energy storage system weight for future commercial hybrid electric propulsion aircraft by melding the load-carrying structure with energy storage in a single material. NASA's multifunctional approach also combines supercapacitor and battery chemistries in a synergistic energy storage arrangement in tandem with supporting good mechanical properties. The arrangement provides an advantageous combination of specific power, energy, and strength

    Evaluation Studies of a 800W Solid Oxide-Based Fuel Cells Stack for Electrical Power in Aviation

    Get PDF
    As both NASA and the aeronautics industry recognize the need for higher fuel efficiency and lower carbon emissions in both commercial airline and private aviation applications, development of all-electric or hybrid electric aircraft have garnered renewed interest in the aviation community. For the particular example of the hybrid-electric option, the solid oxide fuel cell (SOFC) is an attractive option for the power source, due to its potential to utilize aviation fuels thereby having minimal impact to aviation infrastructure. SOFC stack performance depends upon many factors, one of the most important is the way the oxidant and fuel gases are delivered to the fuel cells. System modeling of various aircraft configurations for FUELEAP (Fostering Ultra-Efficient, Low-Emitting Aviation Power) point to the need to operate SOFC stacks at high current densities. This creates challenges in the thermal profile of the stacks with potential to create large thermal gradients and hot spots. This study investigates two types of commercial solid oxide fuel cell stacks, the cross flow and co-flow gas designs, both convectively cooled with cathode air. High fuel utilization factors were also employed under varying electrical loads expected from the demands of flight. In addition, performance, range of operation and endurance were investigated under conditions of high current loads and thermal cycling. Evaluations include the study of gas kinetic using electrochemical spectroscopy. Testing took place at the facilities of NASA Glenn using a commercial test system (FuelCon AG, Magdeburg Germany). These studies are crucial to the Glenn Research Center's ability to conduct research, evaluation and development of the next-generation SOFC based stacks for cutting-edge energy technologies for aerospace applications. This study supports NASA's Convergent Aeronautics Solutions' (CAS) FUELEAP project

    Energy Storage for Aerospace Applications

    No full text
    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications
    corecore