30 research outputs found

    Neutrophils Protect Against Staphylococcus aureus Endocarditis Progression Independent of Extracellular Trap Release

    Get PDF
    Background: Infective endocarditis (IE) is characterized by an infected thrombus at the heart valves. How bacteria bypass the immune system and cause these thrombi remains unclear. Neutrophils releasing NETs (neutrophil extracellular traps) lie at this interface between host defense and coagulation. We aimed to determine the role of NETs in IE immunothrombosis. Methods: We used a murine model of Staphylococcus aureus endocarditis in which IE is provoked on inflamed heart valves and characterized IE thrombus content by immunostaining identifying NETs. Antibody-mediated neutrophil depletion and neutrophil-selective PAD4 (peptidylarginine deiminase 4)-knockout mice were used to clarify the role of neutrophils and NETs, respectively. S. aureus mutants deficient in key virulence factors related to immunothrombosis (nucleases or staphylocoagulases) were investigated. Results: Neutrophils releasing NETs were present in infected thrombi and within cellular infiltrates in the surrounding vasculature. Neutrophil depletion increased occurrence of IE, whereas neutrophil-selective impairment of NET formation did not alter IE occurrence. Absence of S. aureus nuclease, which degrades NETs, did not affect endocarditis outcome. In contrast, absence of staphylocoagulases (coagulase and von Willebrand factor binding protein) led to improved survival, decreased bacteremia, smaller infiltrates, and decreased tissue destruction. Significantly more NETs were present in these vegetations, which correlated with decreased bacteria and cell death in the adjacent vascular wall. Conclusions: Neutrophils protect against IE independent of NET release. Absence of S. aureus coagulases, but not nucleases, reduced IE severity and increased NET levels. Staphylocoagulase-induced fibrin likely hampers NETs from constraining infection and the resultant tissue damage, a hallmark of valve destruction in IE

    Permanent ligation of the left anterior descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure

    No full text
    Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure. Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload. Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure. A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion. In contrast, the infarct area at 24 hr after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling. Besides the model of permanent ligation of the left anterior descending coronary artery, the technique of invasive hemodynamic measurements in mice is presented in detail.status: publishe

    BMP-SMAD1/5 Signaling Regulates Retinal Vascular Development

    No full text
    Vascular development is an orchestrated process of vessel formation from pre-existing vessels via sprouting and intussusceptive angiogenesis as well as vascular remodeling to generate the mature vasculature. Bone morphogenetic protein (BMP) signaling via intracellular SMAD1 and SMAD5 effectors regulates sprouting angiogenesis in the early mouse embryo, but its role in other processes of vascular development and in other vascular beds remains incompletely understood. Here, we investigate the function of SMAD1/5 during early postnatal retinal vascular development using inducible, endothelium-specific deletion of Smad1 and Smad5. We observe the formation of arterial-venous malformations in areas with high blood flow, and fewer and less functional tip cells at the angiogenic front. The vascular plexus region is remarkably hyperdense and this is associated with reduced vessel regression and aberrant vascular loop formation. Taken together, our results highlight important functions of SMAD1/5 during vessel formation and remodeling in the early postnatal retina.status: publishe

    BMP-SMAD1/5 Signaling Regulates Retinal Vascular Development

    No full text
    Vascular development is an orchestrated process of vessel formation from pre-existing vessels via sprouting and intussusceptive angiogenesis as well as vascular remodeling to generate the mature vasculature. Bone morphogenetic protein (BMP) signaling via intracellular SMAD1 and SMAD5 effectors regulates sprouting angiogenesis in the early mouse embryo, but its role in other processes of vascular development and in other vascular beds remains incompletely understood. Here, we investigate the function of SMAD1/5 during early postnatal retinal vascular development using inducible, endothelium-specific deletion of Smad1 and Smad5. We observe the formation of arterial-venous malformations in areas with high blood flow, and fewer and less functional tip cells at the angiogenic front. The vascular plexus region is remarkably hyperdense and this is associated with reduced vessel regression and aberrant vascular loop formation. Taken together, our results highlight important functions of SMAD1/5 during vessel formation and remodeling in the early postnatal retina

    In Vitro and In Vivo Model to Study Bacterial Adhesion to the Vessel Wall Under Flow Conditions

    No full text
    In order to cause endovascular infections and infective endocarditis, bacteria need to be able to adhere to the vessel wall while being exposed to the shear stress of flowing blood. To identify the bacterial and host factors that contribute to vascular adhesion of microorganisms, appropriate models that study these interactions under physiological shear conditions are needed. Here, we describe an in vitro flow chamber model that allows to investigate bacterial adhesion to different components of the extracellular matrix or to endothelial cells, and an intravital microscopy model that was developed to directly visualize the initial adhesion of bacteria to the splanchnic circulation in vivo. These methods can be used to identify the bacterial and host factors required for the adhesion of bacteria under flow. We illustrate the relevance of shear stress and the role of von Willebrand factor for the adhesion of Staphylococcus aureus using both the in vitro and in vivo model.status: publishe

    Advanced-age C57BL/6JRj mice do not develop obesity upon western-type diet exposure

    No full text
    Obesity has become a global health-threat for every age group. It is well known that young mice (10-12 weeks of age) fed a western-type diet (WD) become obese and develop higher cholesterol levels and liver steatosis whereas insulin sensitivity is reduced. Less is known, however, about the effect of a WD on advanced-age mice. Therefore, 10 week-old (young) and 22 month-old (advanced-age), male C57BL/6JRj mice were kept on either a WD or a control diet (SFD) for 15 weeks. In contrast to young mice, advanced-age mice on WD did not show a higher body weight or adipose tissue (AT)-masses, suggesting a protection against diet-induced obesity. Furthermore, plasma adiponectin and leptin levels were not affected upon WD-feeding. A WD, however, did induce more hepatic lipid accumulation as well as increased hepatic expression of the macrophage marker F4/80, in advanced-age mice. There were no significant differences in mRNA levels of uncoupling protein-1 or F4/80 in brown AT (BAT) or of several intestinal integrity markers in colon suggesting that the protection against obesity is not due to excessive BAT or to impaired intestinal absorption of fat. Thus, advanced-age mice, in contrast to their younger counterparts, appeared to be protected against diet-induced obesity.status: publishe

    Absence of Pear1 does not affect murine platelet function in vivo

    No full text
    BACKGROUND: Platelet Endothelial Aggregation Receptor-1 (PEAR1) is a transmembrane platelet receptor that amplifies the activation of the platelet fibrinogen receptor (αIIbβ3) during platelet aggregation. In man, Pear1 polymorphisms are associated with changes in platelet aggregability. In this report, we characterized Pear1 expression and function in murine platelets. METHODS: Pear1 phosphorylation and signaling, platelet aggregation, α-degranulation and clot retraction were studied in WT and Pear1-/- platelets. The function of Pear1 in haemostasis and thrombosis was studied in a mouse tail vein bleeding and ferric chloride-induced mesenteric thrombosis model. RESULTS: Mature murine platelets express Pear1 on their membrane and clustering of Pear1 by anti-Pear1 antibodies triggered platelet aggregation. Pear1 was weakly phosphorylated during collagen-induced murine platelet aggregation and was translocated to the cytoskeleton. Absence of murine Pear1 impaired dextran sulfate-induced platelet aggregation, but did not impact collagen-, AYPGK and ADP-induced platelet aggregation, coupled to a lower Pear1 expression in murine than in human platelets and to weaker Pear1-mediated downstream signaling. Neither clot retraction nor α-degranulation was affected in Pear1-/- mice. Likewise, in vivo tests like the tail vein bleeding time and thrombus formation in mesenteric veins were similar in WT and Pear1-/- mice. CONCLUSION: Murine platelet Pear1 shares a number of characteristics with human platelet PEAR1. Nevertheless, murine Pear1 contributes less to platelet function as does human PEAR1 and does not overtly impact haemostasis and thrombosis in mice.publisher: Elsevier articletitle: Absence of Pear1 does not affect murine platelet function in vivo journaltitle: Thrombosis Research articlelink: http://dx.doi.org/10.1016/j.thromres.2016.08.026 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved.status: publishe

    Hypercholesterolemia impairs vascular remodelling after porcine coronary angioplasty

    No full text
    OBJECTIVE: To assess the effect of hypercholesterolemia on neointima formation and vascular remodelling after porcine coronary angioplasty. METHODS: Left anterior descending coronary angioplasty was carried out in five control and 16 age-matched hypercholesterolemic miniature pigs. Vascular remodelling was measured by intravascular ultrasound. Neointima size and composition were assessed by quantitative image analysis. Coronary smooth muscle cells (SMC) from control and diet pigs were collected 1 h after angioplasty for in vitro study of the effect of hypercholesterolemic serum on SMC migration and of macrophage-induced matrix degradation on SMC adhesion. RESULTS: Twenty-eight days after angioplasty, lumen increase was 0.08+/-1.7 mm(2) in diet and 2.7+/-2.7 mm(2) (P=0.016) in control pigs. Lumen increase correlated with vascular remodelling (IEL(post)/IEL(pre); R(2)=0.59; P<0.001) and with the circumferential gain relative to the neointima (R(2)=0.32; P<0.01) but not with neointimal area that was similar in control and diet pigs. Circumferential gain correlated with VSMC deposition at the site of the injury (R(2)=0.28; P<0.01) that correlated with organized collagen (R(2)=0.34; P<0.01). The VSMC and collagen content of neointima in diet pigs was lower whereas the macrophage content was higher. Hypercholesterolemic serum and oxidised LDL reduced migration of VSMC from diet pigs. Macrophage-induced degradation of VSMC extracellular matrix reduced VSMC adhesion (P=0.015). CONCLUSION: Hypercholesterolemia impairs vascular remodelling of balloon-treated coronary arteries. It decreases VSMC and collagen accumulation at the site of injury. Our in vitro data suggest that this decrease can be due to macrophage-induced matrix degradation and reduced VSMC adhesion and to impaired VSMC migration. Oxidised LDL mimics the inhibitory effect of hypercholesterolemic serum
    corecore