840 research outputs found

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Effect of bilirubin on cytochrome c oxidase activity of mitochondria from mouse brain and liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The unbound, free concentration (B<sub>f</sub>) of unconjugated bilirubin (UCB), and not the total UCB level, has been shown to correlate with bilirubin cytotoxicity, but the key molecular mechanisms accounting for the toxic effects of UCB are largely unknown.</p> <p>Findings</p> <p>Mouse liver mitochondria increase unbound UCB oxidation, consequently increasing the apparent rate constant for unbound UCB oxidation by HRP (Kp), higher than in control and mouse brain mitochondria, emphasizing the importance of determining Kp in complete systems containing the organelles being studied. The <it>in vitro </it>effects of UCB on cytochrome <it>c </it>oxidase activity in mitochondria isolated from mouse brain and liver were studied at B<sub>f </sub>ranging from 22 to 150 nM. The results show that UCB at B<sub>f </sub>up to 60 nM did not alter mitochondrial cytochrome <it>c </it>oxidase activity, while the higher concentrations significantly inhibited the enzyme activity by 20% in both liver and brain mitochondria.</p> <p>Conclusions</p> <p>We conclude that it is essential to include the organelles being studied in the medium used in measuring both Kp and B<sub>f</sub>. A moderately elevated, pathophysiologically-relevant B<sub>f </sub>impaired the cytochrome <it>c </it>oxidase activity modestly in mitochondria from mouse brain and liver.</p

    Interaction of cimetidine with P450 in a mouse model of hepatocarcinogenesis initiation

    Get PDF
    Many drugs and xenobiotics are lipophilic and they should be transformed into more polar water soluble compounds to be excreted. Cimetidine inhibits cytochrome P450. The aim of this study was to investigate the preventive and/or reversal action of cimetidine on cytochrome P450 induction and other metabolic alterations provoked by the carcinogen p-dimethylaminoazobenzene. A group of male CF1 mice received a standard laboratory diet and another group was placed on dietary p-dimethylaminoazobenzene (0.5% w w−1). After 40 days of treatment, animals of both groups received p-dimethylaminoazobenzene and two weekly doses of cimetidine (120 mg kg−1, i.p.) during a following period of 35 days. Cimetidine prevented and reversed δ-aminolevulinate synthetase induction and cytochrome P450 enhancement provoked by p-dimethylaminoazobenzene. However, cimetidine did not restore haem oxygenase activity decreased by p-dimethylaminoazobenzene. Enhancement in glutathione S-transferase activity provoked by p-dimethylaminoazobenzene, persisted in those animals then treated with cimetidine. This drug did not modify either increased lipid peroxidation or diminution of the natural antioxidant defence system (inferred by catalase activity) induced by p-dimethylaminoazobenzene. In conclusion, although cimetidine treatment partially prevented and reversed cytochrome P450 induction, and alteration on haem metabolism provoked by p-dimethylaminoazobenzene AB, it did not reverse liver damage or lipid peroxidation. These results further support our hypothesis on the necessary existence of a multiple biochemical pathway disturbance for the onset of hepatocarcinogenesis initiation

    Adult Raphe-Specific Deletion of Lmx1b Leads to Central Serotonin Deficiency

    Get PDF
    The transcription factor Lmx1b is essential for the differentiation and survival of central serotonergic (5-HTergic) neurons during embryonic development. However, the role of Lmx1b in adult 5-HTergic neurons is unknown. We used an inducible Cre-LoxP system to selectively inactivate Lmx1b expression in the raphe nuclei of adult mice. Pet1-CreERT2 mice were generated and crossed with Lmx1bflox/flox mice to obtain Pet1-CreERT2; Lmx1bflox/flox mice (which termed as Lmx1b iCKO). After administration of tamoxifen, the level of 5-HT in the brain of Lmx1b iCKO mice was reduced to 60% of that in control mice, and the expression of tryptophan hydroxylase 2 (Tph2), serotonin transporter (Sert) and vesicular monoamine transporter 2 (Vmat2) was greatly down-regulated. On the other hand, the expression of dopamine and norepinephrine as well as aromatic L-amino acid decarboxylase (Aadc) and Pet1 was unchanged. Our results reveal that Lmx1b is required for the biosynthesis of 5-HT in adult mouse brain, and it may be involved in maintaining normal functions of central 5-HTergic neurons by regulating the expression of Tph2, Sert and Vmat2

    Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L.

    Get PDF
    Biochemical changes in the plants of Pistia stratiotes L., a free floating macrophyte exposed to different concentrations of hexavalent chromium (0, 10, 40, 60, 80 and 160 μM) for 48, 96 and 144 h were studied. Chromium-induced oxidative stress in macrophyte was investigated using the multivariate modeling approaches. Cluster analysis rendered two fairly distinct clusters (roots and shoots) of similar characteristics in terms of their biochemical responses. Discriminant analysis identified ascorbate peroxidase (APX) as discriminating variable between the root and shoot tissues. Principal components analysis results suggested that malondialdehyde (MDA), superoxide dismutase (SOD), APX, non-protein thiols (NP-SH), cysteine, ascorbic acid, and Cr-accumulation are dominant in root tissues, whereas, protein and guaiacol peroxidase (GPX) in shoots of the plant. Discriminant partial least squares analysis results further confirmed that MDA, SOD, NP-SH, cysteine, GPX, APX, ascorbic acid and Cr-accumulation dominated in the root tissues, while protein in the shoot. Three-way analysis helped in visualizing simultaneous influence of metal concentration and exposure duration on biochemical variables in plant tissues. The multivariate approaches, thus, allowed for the interpretation of the induced biochemical changes in the plant tissues exposed to chromium, which otherwise using the conventional approaches is difficult

    Impairment of the Plasmodium falciparum Erythrocytic Cycle Induced by Angiotensin Peptides

    Get PDF
    Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10−7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10−6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10−8 M Ang II or 10−8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10−7 M A779. 10−6 M dibutyryl-cAMP increased the level of infection and 10−7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus

    Aerosolized Delivery of Antifungal Agents

    Get PDF
    Pulmonary infections caused by Aspergillus species are associated with significant morbidity and mortality in immunocompromised patients. Although the treatment of pulmonary fungal infections requires the use of systemic agents, aerosolized delivery is an attractive option in prevention because the drug can concentrate locally at the site of infection with minimal systemic exposure. Current clinical evidence for the use of aerosolized delivery in preventing fungal infections is limited to amphotericin B products, although itraconazole, voriconazole, and caspofungin are under investigation. Based on conflicting results from clinical trials that evaluated various amphotericin B formulations, the routine use of aerosolized delivery cannot be recommended. Further research with well-designed clinical trials is necessary to elucidate the therapeutic role and risks associated with aerosolized delivery of antifungal agents. This article provides an overview of aerosolized delivery systems, the intrapulmonary pharmacokinetic properties of aerosolized antifungal agents, and key findings from clinical studies
    corecore