731 research outputs found

    An improved double-toroidal spectrometer for gas phase (e,2e) studies

    Get PDF
    A new spectrometer is described for measuring the momentum distributions of scattered electrons arising from electron-atom and electron-molecule ionization experiments. It incorporates and builds on elements from a number of previous designs, namely, a source of polarized electrons and two high-efficiency electrostatic electron energy analyzers. The analyzers each comprise a seven-element retarding-electrostatic lens system, four toroidal-sector electrodes, and a fast position-and-time-sensitive two-dimensional delay-line detector. Results are presented for the electron-impact-induced ionization of helium and the elastic scattering of electrons from argon and helium which demonstrate that high levels of momentum resolution and data-collection efficiency are achieved. Problematic aspects regarding variations in collection efficiency over the accepted momentum phase space are addressed and a methodology for their correction presented. Principles behind the present design and previous designs for electrostatic analyzers based around electrodes of toroidal-sector geometry are discussed and a framework is provided for optimizing future devices.The assistance of the AustralianGerman Research Cooperation Scheme and the Australian Research Council through Grant No. DP0452553 and a 1998 ARC RIEF grant is gratefully acknowledged

    Novel missense mutation in the bZIP transcription factor, MAF, associated with congenital cataract, developmental delay, seizures and hearing loss (Ayme-Gripp syndrome)

    Get PDF
    Published online: 08 May 2017Background: Cataract is a major cause of severe visual impairment in childhood. The purpose of this study was to determine the genetic cause of syndromic congenital cataract in an Australian mother and son. Method: Fifty-one genes associated with congenital cataract were sequenced in the proband using a custom Ampliseq library on the Ion Torrent Personal Genome Machine (PGM). Reads were aligned against the human genome (hg19) and variants were annotated. Variants were prioritised for validation by Sanger sequencing if they were novel, rare or previously reported to be associated with paediatric cataract and were predicted to be protein changing. Variants were assessed for segregation with the phenotype in the affected mother. Result: A novel likely pathogenic variant was identified in the transactivation domain of the MAF gene (c.176C > G, p.(Pro59Arg)) in the proband and his affected mother., but was absent in 326 unrelated controls and absent from public variant databases. Conclusion: The MAF variant is the likely cause of the congenital cataract, Asperger syndrome, seizures, hearing loss and facial characteristics in the proband, providinga diagnosis of Aymé-Gripp syndrome for the family.Shari Javadiyan, Jamie E. Craig, Shiwani Sharma, Karen M. Lower, Theresa Casey, Eric Haan, Emmanuelle Souzeau and Kathryn P. Burdo

    The UTMOST Survey for Magnetars, Intermittent pulsars, RRATs and FRBs I: System description and overview

    Get PDF
    We describe the ongoing `Survey for Magnetars, Intermittent pulsars, Rotating radio transients and Fast radio bursts' (SMIRF), performed using the newly refurbished UTMOST telescope. SMIRF repeatedly sweeps the southern Galactic plane performing real-time periodicity and single-pulse searches, and is the first survey of its kind carried out with an interferometer. SMIRF is facilitated by a robotic scheduler which is capable of fully autonomous commensal operations. We report on the SMIRF observational parameters, the data analysis methods, the survey's sensitivities to pulsars, techniques to mitigate radio frequency interference and present some early survey results. UTMOST's wide field of view permits a full sweep of the Galactic plane to be performed every fortnight, two orders of magnitude faster than previous surveys. In the six months of operations from January to June 2018, we have performed 10\sim 10 sweeps of the Galactic plane with SMIRF. Notable blind re-detections include the magnetar PSR J1622-4950, the RRAT PSR J0941-3942 and the eclipsing pulsar PSR J1748-2446A. We also report the discovery of a new pulsar, PSR J1705-54. Our follow-up of this pulsar with the UTMOST and Parkes telescopes at an average flux limit of 20\leq 20 mJy and 0.16\leq 0.16 mJy respectively, categorizes this as an intermittent pulsar with a high nulling fraction of <0.002< 0.002Comment: Submitted to MNRAS, comments welcom

    2018 X-Ray and Radio Outburst of Magnetar XTE J1810–197

    Get PDF
    We present the earliest X-ray observations of the 2018 outburst of XTE J1810−197, the first outburst since its 2003 discovery as the prototypical transient and radio-emitting anomalous X-ray pulsar (AXP). The Monitor of All-sky X-ray Image (MAXI) detected XTE J1810−197 immediately after a November 20–26 visibility gap, contemporaneous with its reactivation as a radio pulsar, first observed on December 8. On December 13 the Nuclear Spectroscopic Telescope Array (NuSTAR) detected X-ray emission up to at least 30 keV, with a spectrum well-characterized by a blackbody plus power-law model with temperature kT = 0.74 ± 0.02 keV and photon index Γ = 4.4 ± 0.2 or by a two-blackbody model with kT = 0.59 ± 0.04 keV and kT = 1.0 ± 0.1 keV, both including an additional power-law component to account for emission above 10 keV, with Γ_h = −0.2 ± 1.5 and Γ_h = 1.5 ± 0.5, respectively. The latter index is consistent with hard X-ray flux reported for the nontransient magnetars. In the 2–10 keV bandpass, the absorbed flux is 2 × 10^(−10) erg s^(−1) cm^(−2), a factor of 2 greater than the maximum flux extrapolated for the 2003 outburst. The peak of the sinusoidal X-ray pulse lags the radio pulse by ≈0.13 cycles, consistent with their phase relationship during the 2003 outburst. This suggests a stable geometry in which radio emission originates on magnetic field lines containing currents that heat a spot on the neutron star surface. However, a measured energy-dependent phase shift of the pulsed X-rays suggests that all X-ray emitting regions are not precisely coaligned

    Developing core sets for persons following amputation based on the International Classification of Functioning, Disability and Health as a way to specify functioning

    Get PDF
    Amputation is a common late stage sequel of peripheral vascular disease and diabetes or a sequel of accidental trauma, civil unrest and landmines. The functional impairments affect many facets of life including but not limited to: Mobility; activities of daily living; body image and sexuality. Classification, measurement and comparison of the consequences of amputations has been impeded by the limited availability of internationally, multiculturally standardized instruments in the amputee setting. The introduction of the International Classification of Functioning, Disability and Health (ICF) by the World Health Assembly in May 2001 provides a globally accepted framework and classification system to describe, assess and compare function and disability. In order to facilitate the use of the ICF in everyday clinical practice and research, ICF core sets have been developed that focus on specific aspects of function typically associated with a particular disability. The objective of this paper is to outline the development process for the ICF core sets for persons following amputation. The ICF core sets are designed to translate the benefits of the ICF into clinical routine. The ICF core sets will be defined at a Consensus conference which will integrate evidence from preparatory studies, namely: (a) a systematic literature review regarding the outcome measures of clinical trails and observational studies, (b) semi-structured patient interviews, (c) international experts participating in an internet-based survey, and (d) cross-sectional, multi-center studies for clinical applicability. To validate the ICF core sets field-testing will follow. Invitation for participation: The development of ICF Core Sets is an inclusive and open process. Anyone who wishes to actively participate in this process is invited to do so

    RepSeq-A database of amino acid repeats present in lower eukaryotic pathogens

    Get PDF
    BACKGROUND Amino acid repeat-containing proteins have a broad range of functions and their identification is of relevance to many experimental biologists. In human-infective protozoan parasites (such as the Kinetoplastid and Plasmodium species), they are implicated in immune evasion and have been shown to influence virulence and pathogenicity. RepSeq http://repseq.gugbe.com is a new database of amino acid repeat-containing proteins found in lower eukaryotic pathogens. The RepSeq database is accessed via a web-based application which also provides links to related online tools and databases for further analyses. RESULTS The RepSeq algorithm typically identifies more than 98% of repeat-containing proteins and is capable of identifying both perfect and mismatch repeats. The proportion of proteins that contain repeat elements varies greatly between different families and even species (3 - 35% of the total protein content). The most common motif type is the Sequence Repeat Region (SRR) - a repeated motif containing multiple different amino acid types. Proteins containing Single Amino Acid Repeats (SAARs) and Di-Peptide Repeats (DPRs) typically account for 0.5 - 1.0% of the total protein number. Notable exceptions are P. falciparum and D. discoideum, in which 33.67% and 34.28% respectively of the predicted proteomes consist of repeat-containing proteins. These numbers are due to large insertions of low complexity single and multi-codon repeat regions. CONCLUSION The RepSeq database provides a repository for repeat-containing proteins found in parasitic protozoa. The database allows for both individual and cross-species proteome analyses and also allows users to upload sequences of interest for analysis by the RepSeq algorithm. Identification of repeat-containing proteins provides researchers with a defined subset of proteins which can be analysed by expression profiling and functional characterisation, thereby facilitating study of pathogenicity and virulence factors in the parasitic protozoa. While primarily designed for kinetoplastid work, the RepSeq algorithm and database retain full functionality when used to analyse other species

    Star Formation Suppression by Tidal Removal of Cold Molecular Gas from an Intermediate-redshift Massive Post-starburst Galaxy

    Full text link
    Observations and simulations have demonstrated that star formation in galaxies must be actively suppressed to prevent the formation of overly massive galaxies. Galactic outflows driven by stellar feedback or supermassive black hole accretion are often invoked to regulate the amount of cold molecular gas available for future star formation but may not be the only relevant quenching processes in all galaxies. We present the discovery of vast molecular tidal features extending up to 64 kpc outside of a massive z = 0.646 post-starburst galaxy that recently concluded its primary star-forming episode. The tidal tails contain (1.2 ± 0.1) × 1010 M⊙ of molecular gas, 47% ± 5% of the total cold gas reservoir of the system. Both the scale and magnitude of the molecular tidal features are unprecedented compared to all known nearby or high-redshift merging systems. We infer that the cold gas was stripped from the host galaxies during the merger, which is most likely responsible for triggering the initial burst phase and the subsequent suppression of star formation. While only a single example, this result shows that galaxy mergers can regulate the cold gas contents in distant galaxies by directly removing a large fraction of the molecular gas fuel, and plausibly suppress star formation directly, a qualitatively different physical mechanism than feedback-driven outflows
    corecore