243 research outputs found

    Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    Get PDF
    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as \u27immune privileged\u27, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important aspect of implementing gene therapy in the clinical arena is to be able to image the targeting of the therapeutics to the tumors, treatment effectiveness and progression of disease. We have therefore reviewed the most exciting non-invasive, in vivo imaging techniques which can be used in combination with gene therapy to monitor therapeutic efficacy over time

    Immune-mediated loss of transgene expression from virally transduced brain cells is irreversible, mediated by IFNγ, perforin, and TNFα, and due to the elimination of transduced cells

    Get PDF
    The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4 and CD8 T cells and that these T cells are necessary for transgene elimination. Further, the loss of transgene-expressing brain cells fails to occur in the absence of IFNγ, perforin, and TNFα receptor. Two methods to induce severe immune suppression in immunized animals also fail to restitute transgene expression, demonstrating the irreversibility of this process. The need for cytotoxic molecules and the irreversibility of the reduction in transgene expression suggested to us that elimination of transduced cells is responsible for the loss of transgene expression. A new experimental paradigm that discriminates between downregulation of transgene expression and the elimination of transduced cells demonstrates that transduced cells are lost from the brain upon the induction of a specific antiviral immune response. We conclude that the anti-adenoviral immune response reduces transgene expression in the brain through loss of transduced cellsFil: Zirger, Jeffrey M.. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Puntel, Mariana. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bergeron, Josee. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Wibowo, Mia. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Moridzadeh, Rameen. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Bondale, Niyati. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Barcia, Carlos. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Kroeger, Kurt M.. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Liu, Chunyan. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Castro, Maria Graciela. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados Unidos. University of Michigan; Estados UnidosFil: Lowenstein, Pedro R.. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados Unidos. University of Michigan; Estados Unido

    Double Positive CD4CD8 αβ T Cells: A New Tumor-Reactive Population in Human Melanomas

    Get PDF
    BACKGROUND: Double positive (DP) CD4CD8 Talphabeta cells have been reported in normal individuals as well as in different pathological conditions including inflammatory diseases, viral infections and cancer, but their function remains to be elucidated. We recently reported the increased frequency of DP Talphabeta cells in human breast pleural effusions. This manuscript addresses the question of the existence and above all the role of this non-conventional DP sub-population among tumor associated lymphocytes in melanomas. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the intratumoral cell infiltrate in solid metastasis (n = 6) and tumor invaded lymph nodes (n = 26) samples from melanomas patients by multiparametric cytometry. Here we documented for the first time significant increased frequency of DP T cells in about 60% of melanoma tumors compared to blood samples. Interestingly, a high proportion of these cells produced TNF-alpha in response to autologous melanoma cell lines. Besides, they are characterized by a unique cytokine profile corresponding to higher secretion of IL-13, IL-4 and IL-5 than simple positive T cells. In deep analysis, we derived a representative tumor-reactive DP T cell clone from a melanoma patient's invaded lymph node. This clone was restricted by HLA-A*2402 and recognized both autologous and allogeneic tumor cells of various origins as well as normal cells, suggesting that the target antigen was a ubiquitous self antigen. However, this DP T cell clone failed to kill HLA-A*2402 EBV-transformed B cells, probably due to the constitutive expression of immunoproteasome by these cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, we can postulate that, according to their broad tumor reactivity and to their original cytokine profile, the tumor associated DP T cells could participate in immune responses to tumors in vivo. Therefore, the presence of these cells and their role will be crucial to address in cancer patients, especially in the context of immunotherapies

    Effectiveness and Preclinical Safety Profile of Doxycycline to Be Used “Off-Label” to Induce Therapeutic Transgene Expression in a Phase I Clinical Trial for Glioma

    Full text link
    Glioblastoma multiforme (GBM) is the most common malignant primary brain cancer in adults; it carries a dismal prognosis despite improvements in standard of care. We developed a combined gene therapy strategy using (1) herpes simplex type 1-thymidine kinase in conjunction with the cytotoxic prodrug ganciclovir to kill actively proliferating tumor cells and (2) doxycycline (DOX)-inducible Fms-like tyrosine kinase 3 ligand (Flt3L), an immune stimulatory molecule that induces anti-GBM immunity. As a prelude to a phase I clinical trial, we examined the efficacy and safety of this approach (Muhammad et al., 2010, 2012). In the present article, we investigated the efficacy and safety of the ?off-label? use of the antibiotic DOX to turn on the high-capacity adenoviral vector (HC-Ad) encoding therapeutic Flt3L expression. DOX-inducible Flt3L expression in male Lewis rats was assessed using DOX doses of 30.8?mg/kg/day (low-DOX) or 46.2?mg/kg/day (high-DOX), which are allometrically equivalent (Voisin et al., 1990) to the human doses that are recommended for the treatment of infections: 200 or 300?mg/day. Naïve rats were intracranially injected with 1?109 viral particles of HC-Ad-TetOn-Flt3L, and expression of the therapeutic transgene, that is, Flt3L, was assessed using immunohistochemistry in brain sections after 2 weeks of DOX administration via oral gavage. The results show robust expression of Flt3L in the rat brain parenchyma in areas near the injection site in both the low-DOX and the high-DOX groups, suggesting that Flt3L will be expressed in human glioma patients at a DOX dose of 200 or 300?mg/day. These doses have been approved by the U.S. Food and Drug Administration to treat infections in humans and would thus be considered safe for an off-label use to treat GBM patients undergoing HC-Ad-mediated gene therapy in a phase I clinical trial.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140104/1/humc.2013.139.pd

    Preclinical Efficacy and Safety Profile of Allometrically Scaled Doses of Doxycycline Used to Turn “On” Therapeutic Transgene Expression from High-Capacity Adenoviral Vectors in a Glioma Model

    Full text link
    Glioblastoma multiforme (GBM) is the most commonly occurring primary brain cancer in adults, in whom its highly infiltrative cells prevent total surgical resection, often leading to tumor recurrence and patient death. Our group has discovered a gene therapy approach for GBM that utilizes high-capacity ?gutless? adenoviral vectors encoding regulatable therapeutic transgenes. The herpes simplex type 1-thymidine kinase (TK) actively kills dividing tumor cells in the brain when in the presence of the prodrug, ganciclovir (GCV), whereas the FMS-like tyrosine kinase 3 ligand (Flt3L) is an immune-stimulatory molecule under tight regulation by a tetracycline-inducible ?Tet-On? activation system that induces anti-GBM immunity. As a prelude to a phase I clinical trial, we evaluated the safety and efficacy of Food and Drug Administration (FDA)?approved doses of the tetracycline doxycycline (DOX) allometrically scaled for rats. DOX initiates the expression of Flt3L, which has been shown to recruit dendritic cells to the brain tumor microenvironment?an integral first step in the development of antitumor immunity. The data revealed a highly safe profile surrounding these human-equivalent doses of DOX under an identical therapeutic window as proposed in the clinical trial. This was confirmed through a neuropathological analysis, liver and kidney histopathology, detection of neutralizing antibodies, and systemic toxicities in the blood. Interestingly, we observed a significant survival advantage in rats with GBM receiving the 300?mg/day equivalent dosage of DOX versus the 200?mg/day equivalent. Additionally, rats rejected ?recurrent? brain tumor threats implanted 90 days after their primary brain tumors. We also show that DOX detection within the plasma can be an indicator of optimal dosing of DOX to attain therapeutic levels. This work has significant clinical relevance for an ongoing phase I clinical trial in humans with primary GBM and for other therapeutic approaches using Tet-On transactivation system in humans.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140103/1/hgtb.2015.168.pd

    Adenoviral vector-mediated gene therapy for gliomas: coming of age

    Get PDF
    INTRODUCTION: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED: This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION: The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.Fil: Castro, María G.. University of Michigan; Estados UnidosFil: Candolfi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Wilson, Thomas J.. University of Michigan; Estados UnidosFil: Calinescu, Alexandra. University of Michigan; Estados UnidosFil: Paran, Christopher. University of Michigan; Estados UnidosFil: Kamran, Neha. University of Michigan; Estados UnidosFil: Koschmann, Carl. University of Michigan; Estados UnidosFil: Moreno Ayala, Mariela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Assi, Hikmat. University Of Michigan Medical School;Fil: Lowenstein, Pedro R.. University of Michigan; Estados Unido

    Novel Gene Therapeutic Approaches to Brain Cancer

    Get PDF
    In the United States, approximately 17,000 people per year are diagnosed with brain tumors, the leading cause of death from cancers in children ages 1-15 year (1,2). Gliomas are the most prevalent type of brain tumors in adults, affecting 3.2/100,000 persons/yr in the United States (www.CBTRUS.org). In spite of advances in surgery, chemotherapy, and radiotherapy, the mean survival time of patients post-diagnosis remains approximately 9-12 months

    Plasmacytoid Dendritic Cells in the Tumor Microenvironment: Immune Targets for Glioma Therapeutics

    Get PDF
    AbstractAdenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK) induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM]) models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs) into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α), their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs) into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM

    ATRX loss in pediatric glioma results in epigenetic dysregulation of G2/M checkpoint maintenance and sensitivity to ATM inhibition

    Get PDF
    ATRX is a histone chaperone protein recurrently mutated in pediatric glioma. The mechanism which mediates the proliferative advantage of ATRX loss in pediatric glioma remains unexplained. Recent data revealed a distinct pattern of DNA binding sites of the ATRX protein using ChIP-seq in mouse neuronal precursor cells (mNPCs). Using the ATRX peaks identified in p53-/- mNPCs, we confirmed that ATRX binding sites were significantly enriched in gene promoters (p \u3c 0.0001) and CpG islands (p \u3c 0.0001) compared with random regions. Gene set enrichment (GSE) analysis identified that cell cycle and regulation of cell cycle were among the most significantly enriched gene sets (p=2.52e-16 and 1.61e-9, respectively). We found that ATRX loss resulted in dysfunction of G2/M checkpoint maintenance: (1) ATRX-deficient pediatric glioblastoma (GBM) cells exhibited a seven-fold increase in mitotic index at 16 hours after sub-lethal radiation, and (2) murine GBM cells with ATRX knockdown demonstrated impaired pChk1 signaling on western blot at multiple time points after radiation compared to controls (p=0.0187). Notably, the ATM signaling (pChk2) remained intact in those cells, suggesting a potential therapeutic target. ATRX-deficient mouse cells were uniquely sensitive to ATM inhibitors at 1 uM alongside 8 Gy radiation compared to controls with intact ATRX (AZD0156: p=0.0027 and AZD01390: p=0.0436). Mice intra-cranially implanted with ATRX-deficient GBM cells showed improved survival (n=10, p=0.0018) when treated with AZD0156 combined with radiation. Our findings suggest that ATRX loss in glioma results in unique sensitivity to ATM inhibition via epigenetic dysregulation of G2/M checkpoint maintenance
    corecore