26 research outputs found

    Substrates of the \u3cem\u3eArabidopsis thaliana\u3c/em\u3e Protein Isoaspartyl Methyltransferase 1 Identified Using Phage Display and Biopanning

    Get PDF
    The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when PIMT protein binding was poisoned with S-adenosyl homocysteine. After four rounds, phage titer plateaued in AdoMet-containing pans, whereas titer declined in both controls. This strategy identified 17 in-frame PIMT target proteins, including a cupin-family protein similar to those identified previously using on-blot methylation. All recovered phage had at least one susceptible Asp or Asn residue. Five targets were recovered independently. Two in-frame targets were produced in Escherichia coli as recombinant proteins and shown by on-blot methylation to acquire isoAsp, becoming a PIMT target. Both gained isoAsp rapidly in solution upon thermal insult. Mutant analysis of plants deficient in any of three in-frame PIMT targets resulted in demonstrable phenotypes. An over-representation of clones encoding proteins involved in protein production suggests that the translational apparatus comprises a subgroup for which PIMT-mediated repair is vital for orthodox seed longevity. Impaired PIMT activity would hinder protein function in these targets, possibly resulting in poor seed performance

    A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis

    Get PDF
    Using small molecule probes to understand gene function is an attractive approach that allows functional characterization of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1 mutants revealed that Crg1, a stress-responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of small molecule inhibitors

    Wortmannin Reduces Insulin Signaling and Death in Seizure-Prone <em>Pcmt1</em> Mice

    Get PDF
    <div><p>L-isoaspartyl (D-aspartyl) <em>O</em>-methyltransferase deficient mice (<em>Pcmt1<sup>−/−</sup></em>) accumulate isomerized aspartyl residues in intracellular proteins until their death due to seizures at approximately 45 days. Previous studies have shown that these mice have constitutively activated insulin signaling in their brains, and that these brains are 20–30% larger than those from age-matched wild-type animals. To determine whether insulin pathway activation and brain enlargement is responsible for the fatal seizures, we administered wortmannin, an inhibitor of the phosphoinositide 3-kinase that catalyzes an early step in the insulin pathway. Oral wortmannin reduced the average brain size in the Pcmt1<sup>−/−</sup> animals to within 6% of the wild-type DMSO administered controls, and nearly doubled the lifespan of Pcmt1<sup>−/−</sup> at 60% survival of the original population. Immunoblotting revealed significant decreases in phosphorylation of Akt, PDK1, and mTOR in Pcmt1<sup>−/−</sup> mice and Akt and PDK1 in wild-type animals upon treatment with wortmannin. These data suggest activation of the insulin pathway and its resulting brain enlargement contributes to the early death of Pcmt1−/− mice, but is not solely responsible for the early death observed in these animals.</p> </div

    Comparison of brain weights at 45 days of wortmannin (WORT) and control DMSO treated wild-type (WT) and <i>Pcmt1<sup>−/−</sup></i> (KO) mice.

    No full text
    <p>Panel A: Male mice. Panel B: Female mice. No female KO mice without WORT survived to 45 days of age. In each case the patterned bars indicate the average of ‘n’ treated animals +/− the standard deviation. The horizontal bars indicate the p values obtained by the Student’s t-test (two-tailed, unpaired) in the indicated comparisons.</p

    Source of Antibodies and Immunoblotting Protocols.

    No full text
    <p>Source of Antibodies and Immunoblotting Protocols.</p

    Quantitation of damaged aspartyl and asparaginyl residues in brain extracts.

    No full text
    <p>L-isoaspartyl residues arising <i>in vivo</i> in soluble brain polypeptides and proteins were labeled <i>in vitro</i> using recombinant human Pcmt1 and S-adenosyl- [<sup>14</sup>C] methionine. The resulting [<sup>14</sup>C] methyl esters were converted to [<sup>14</sup>C] methanol with sodium hydroxide and allowed to diffuse from filter paper into scintillation fluid, which was counted in a scintillation counter. There are significantly more damaged residues in KO brains than in WT brains, but no significant change due to wortmannin treatment (n = 7 for each experimental group).</p

    Deuteration protects asparagine residues against racemization

    No full text
    Racemization in proteins and peptides at sites of L-asparaginyl and L-aspartyl residues contributes to their spontaneous degradation, especially in the biological aging process. Amino acid racemization involves deprotonation of the alpha carbon and replacement of the proton in the opposite stereoconfiguration; this reaction is much faster for aspartate/asparagine than for other amino acids because these residues form a succinimide ring in which resonance stabilizes the carbanion resulting from proton loss. To determine if the replacement of the hydrogen atom on the alpha carbon with a deuterium atom might decrease the rate of racemization and thus stabilize polypeptides, we synthesized a hexapeptide, VYPNGA, in which the three carbon-bound protons in the asparaginyl residue were replaced with deuterium atoms. Upon incubation of this peptide in pH 7.4 buffer at 37&nbsp;°C, we found that the rate of deamidation via the succinimide intermediate was unchanged by the presence of the deuterium atoms. However, the accumulation of the D-aspartyl and D-isoaspartyl-forms resulting from racemization and hydrolysis of the succinimide was decreased more than five-fold in the deuterated peptide over a 20&nbsp;day incubation at physiological temperature and pH. Additionally, we found that the succinimide intermediate arising from the degradation of the deuterated asparaginyl peptide was slightly less likely to open to the isoaspartyl configuration than was the protonated succinimide. These findings suggest that the kinetic isotope effect resulting from the presence of deuteriums in asparagine residues can limit the accumulation of at least some of the degradation products that arise as peptides and proteins age

    Body weight of wild-type and <i>Pcmt1<sup>−/−</sup></i> mice at time of weaning.

    No full text
    <p><i>Pcmt1<sup>−/−</sup></i> mice are significantly smaller than their wild-type littermates when they are weaned at 21 or 22 days of age. The average weight +/− the standard deviation is shown as well as p-values calculated by Student’s t-test.</p
    corecore