452 research outputs found

    EFFECTS OF CELL-CELL SIGNALING ON MESENCHYMAL STEM CELL MECHANOSENSING AND ADAPTATION TO DYNAMIC MATERIAL

    Get PDF
    The goal of this research is to identify the role of engineered cell-cell signals on how cells sense material properties. Mesenchymal stem cells (MSCs) are adult cells whose behavior is regulated by matrix mechanosensing, which is characterized by stiffness-dependent changes in cell shape and the nuclear localization of mechano-transducer proteins including YAP (Yes-associated Protein). MSC area and nuclear YAP translocation increase with increasing stiffness, and although low levels of N-cadherin-based cell-cell signaling reduce this effect, two fundamental questions remain: (1) do engineered cell-cell signals at higher concentrations further reduce matrix mechanosensing, and (2) does N-cadherin signaling affect MSC adaptation to dynamic materials. To answer these questions, a stiffening hydrogel system was developed to independently control stiffness and HAVDI, a peptide that mimics cell-cell signaling. High concentrations of HAVDI (2 mM) reduce matrix mechanosensing on static hydrogels as seen by a decrease in area and nuclear YAP. The area of MSCs on soft HAVDI hydrogels that are stiffened does not change, but surprisingly nuclear YAP increases post-stiffening. These studies demonstrate that competing stiffness and cell-cell signals regulate matrix mechanosensing, and these insights are critical towards developing in vitro platforms to study ailments attributed to tissue stiffening including cancer, fibrosis, and aging

    Laser Light Sheet Flow Visualization of the Space Launch System Booster Separation Test

    Get PDF
    Planar flow visualizations were obtained in a wind tunnel test in the NASA Langley Research Centers Unitary Plan Wind Tunnel using the laser-light-sheet method. This method uses a laser to illuminate fine particles generated in the wind tunnel to visualize flow structures. The test article was designed to simulate the separation of the two solid rocket boosters (SRBs) from the core stage of the NASA Space Launch System (SLS) at Mach 4 using a scale model. The test was run on of the SLS Block 1B Cargo (27005) configuration and the SLS Block 1B Crew (28005) configuration. Planar flow visualization was obtained only on the crew configuration. Air at pressures up to 1500 psi was used to simulate plumes from the booster separation motors (BSMs) located at the nose, and aft skirt of the two boosters. The facility free stream was seeded with water vapor, which condensed and froze into small ice crystals in the tunnel nozzle expansion. A continuous wave green (532 nm) laser sheet was used to illuminate the ice crystals, and the resulting Mie-scattered light was collected with a camera. The resulting images clearly identify shock waves and other flow features including BSM plume shapes. Measurements were acquired for different BSM pressures and booster separation locations

    The Arclight Ophthalmoscope: A Reliable Low-Cost Alternative to the Standard Direct Ophthalmoscope.

    Get PDF
    Background. The Arclight ophthalmoscope is a low-cost alternative to standard direct ophthalmoscopes. This study compared the Arclight ophthalmoscope with the Heine K180 direct ophthalmoscope to evaluate its reliability in assessing the vertical cup disc ratio (VCDR) and its ease of use (EOU). Methods. Eight medical students used both the Arclight and the Heine ophthalmoscopes to examine the optic disc in 9 subjects. An EOU score was provided after every examination (a higher score indicating that the ophthalmoscope is easier to use). A consultant ophthalmologist provided the reference standard VCDR. Results. 288 examinations were performed. The number of examinations that yielded an estimation of the VCDR was significantly higher for the Arclight ophthalmoscope (125/144, 85%) compared to the Heine ophthalmoscope (88/144, 61%) (p < 0.001). The mean difference from the reference standard VCDR was similar for both instruments, with a mean of -0.078 (95% CI: -0.10 to -0.056) for the Arclight and -0.072 (95% CI: -0.097 to -0.046) for Heine (p = 0.69). The overall EOU score was significantly higher for the Arclight ophthalmoscope (p < 0.001). Conclusion. The Arclight ophthalmoscope performs as well as, and is easier to use than, a standard direct ophthalmoscope, suggesting it is a reliable, low-cost alternative

    National Climate Change Adaptation Research Plan Terrestrial Biodiversity: update 2017

    Get PDF
    In 2011, a National Climate Change Adaptation Research Plan (NARP) was developed for the terrestrial ecosystems and biodiversity theme of climate change adaptation (Terrestrial NARP 2011). The Terrestrial NARP aims to identify priority research questions for climate change adaptation issues relevant to Australia's cities, towns and regions, including coastal communities and regions. This NARP was updated in 2013 (Terrestrial NARP 2013). The purpose of this document is to review the Terrestrial NARP 2013 and this was done through a series of workshops with key stakeholders in 2015-16. The most important component of the NARPs is to identify and prioritise adaptation research questions that are important, often urgent, and will provide knowledge needed by adaptation stakeholders across Australia. Based on the stakholder review, a total of 20 priority research questions (Table 1) are presented in this report within four research themes

    Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability

    Get PDF
    Understanding which flowers honey bees (Apis mellifera) use for forage can help us to provide suitable plants for healthy honey bee colonies. Accordingly, honey DNA metabarcoding provides a valuable tool for investigating pollen and nectar collection. We investigated early season (April and May) floral choice by honey bees provided with a very high diversity of flowering plants within the National Botanic Garden of Wales. There was a close correspondence between the phenology of flowering and the detection of plants within the honey. Within the study area there were 437 genera of plants in flower during April and May, but only 11% of these were used. Thirty-nine plant taxa were recorded from three hives but only ten at greater than 1%. All three colonies used the same core set of native or near-native plants, typically found in hedgerows and woodlands. The major plants were supplemented with a range of horticultural species, with more variation in plant choice between the honey bee colonies. We conclude that during the spring, honey bees need access to native hedgerows and woodlands to provide major plants for foraging. Gardens provide supplementary flowers that may increase the nutritional diversity of the honey bee diet

    Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation

    Get PDF
    Integrin-mediated adhesion regulates the development and function of a range of tissues; however, little is known about its role in glandular epithelium. To assess the contribution of β1 integrin, we conditionally deleted its gene in luminal epithelia during different stages of mouse mammary gland development and in cultured primary mammary epithelia. Loss of β1 integrin in vivo resulted in impaired alveologenesis and lactation. Cultured β1 integrin–null cells displayed abnormal focal adhesion function and signal transduction and could not form or maintain polarized acini. In vivo, epithelial cells became detached from the extracellular matrix but remained associated with each other and did not undergo overt apoptosis. β1 integrin–null mammary epithelial cells did not differentiate in response to prolactin stimulation because of defective Stat5 activation. In mice where β1 integrin was deleted after the initiation of differentiation, fewer defects in alveolar morphology occurred, yet major deficiencies were also observed in milk protein and milk fat production and Stat5 activation, indicating a permissive role for β1 integrins in prolactin signaling. This study demonstrates that β1 integrin is critical for the alveolar morphogenesis of a glandular epithelium and for maintenance of its differentiated function. Moreover, it provides genetic evidence for the cooperation between integrin and cytokine signaling pathways

    Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays

    Full text link
    Polarized thermal emission from interstellar dust grains can be used to map magnetic fields in star forming molecular clouds and the diffuse interstellar medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced degree-scale polarization maps of several nearby molecular clouds with arcminute resolution. The success of BLASTPol has motivated a next-generation instrument, BLAST-TNG, which will use more than 3000 linear polarization sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5m diameter carbon fiber primary mirror to make diffraction-limited observations at 250, 350, and 500 μ\mum. With 16 times the mapping speed of BLASTPol, sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to examine nearby molecular clouds and the diffuse galactic dust polarization spectrum in unprecedented detail. The 250 μ\mum detector array has been integrated into the new cryogenic receiver, and is undergoing testing to establish the optical and polarization characteristics of the instrument. BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from Antarctica in December 2017 for 28 days and will be the first balloon-borne telescope to offer a quarter of the flight for "shared risk" observing by the community.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, June 29th, 201

    British Lung Foundation/United Kingdom primary immunodeficiency network consensus statement on the definition, diagnosis, and management of granulomatous-lymphocytic interstitial lung disease in common variable immunodeficiency disorders

    Get PDF
    A proportion of people living with common variable immunodeficiency disorders develop granulomatous-lymphocytic interstitial lung disease (GLILD). We aimed to develop a consensus statement on the definition, diagnosis, and management of GLILD. All UK specialist centers were contacted and relevant physicians were invited to take part in a 3-round online Delphi process. Responses were graded as Strongly Agree, Tend to Agree, Neither Agree nor Disagree, Tend to Disagree, and Strongly Disagree, scored +1, +0.5, 0, −0.5, and −1, respectively. Agreement was defined as greater than or equal to 80% consensus. Scores are reported as mean ± SD. There was 100% agreement (score, 0.92 ± 0.19) for the following definition: “GLILD is a distinct clinico-radio-pathological ILD occurring in patients with [common variable immunodeficiency disorders], associated with a lymphocytic infiltrate and/or granuloma in the lung, and in whom other conditions have been considered and where possible excluded.” There was consensus that the workup of suspected GLILD requires chest computed tomography (CT) (0.98 ± 0.01), lung function tests (eg, gas transfer, 0.94 ± 0.17), bronchoscopy to exclude infection (0.63 ± 0.50), and lung biopsy (0.58 ± 0.40). There was no consensus on whether expectant management following optimization of immunoglobulin therapy was acceptable: 67% agreed, 25% disagreed, score 0.38 ± 0.59; 90% agreed that when treatment was required, first-line treatment should be with corticosteroids alone (score, 0.55 ± 0.51)
    corecore