270 research outputs found
An experiment to measure the energy spectrum of cosmic ray antiprotons from 100 to 1000 MeV
Production models were developed and the confirmation of each one had significant astrophysical impact. These include radical modifications of propagation models, cosmic ray antiprotons injection from neighboring domains of antimatter, p production by evaporating primordial black holes, and cosmic ray p's as annihilation products of supersymmetry particles that might make up the dark dynamical mass of the Galaxy. It is that p's originating from supersymmetric parents might have distinct spectral features that would survive solar modulation; in one model, higgsino annihilation proceeds through the bb quark-antiquark channel, producing a spectral bump at approx. 0.3 GeV in the p spectrum
Recommended from our members
Some general properties of stimulated Raman propagation with pump depletion, transiency and dispersion
This note considers some of the properties of the Stokes pulse that grows from a specified seed pulse in the presence of a strong pump pulse as it propagates through a dispersive atomic vapor. We first present an generic dimensionless form for the coupled equations that govern the propagation of pump and Stokes fields or collinear plane-wave pulses. By treating the two fields we permit pump depletion. We include transient atomic response (as embodied in the Raman coherence), but neglect changes in atomic populations. (Thus our equations pertain to the regime in which atoms are more numerous than photons). The equations employ a gain length, a dispersion time {tau}{sub dis}, and a Raman coherence time (or memory time) {tau}{sub R} as basic parameters: these two times, together with a single-photon stationary-atom detuning {Delta}, subsume the details of a particular atomic Raman transition and particular operating conditions. (The effects of Doppler shifts enters the equations through the coherence time). We discuss some general properties of these generic Raman propagation equations, and present illustrations of their solutions in the absence of dispersion. We comment on departures from exponential growth. We than show examples of behavior when dispersion is present and the pump pulse has a bandwidth that exceeds the transform limit. The illustrations presented here do not pertain to any specific atom (i.e. specific wavelengths and oscillator strengths) or to specific experimental conditions (i.e. number densities and pulse intensities). To permit the connection between the present generic results and particular experiments we conclude by providing expressions for the gain length and dispersion time in terms of atomic number density, polarizabilities, oscillator strengths, statistical weights, transition frequencies, and polarization directions. 11 figs
Strangelets: Who is Looking, and How?
It has been over 30 years since the first suggestion that the true ground
state of cold hadronic matter might be not nuclear matter but rather strange
quark matter (SQM). Ever since, searches for stable SQM have been proceeding in
various forms and have observed a handful of interesting events but have
neither been able to find compelling evidence for stable strangelets nor to
rule out their existence. I will survey the current status and near future of
such searches with particular emphasis on the idea of SQM from strange star
collisions as part of the cosmic ray flux.Comment: Talk given at International Conference on Strangeness in Quark
Matter, 2006. 8 pages. 1 figur
Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions
Spiny lobsters rely on multiple biomineralized exoskeletal predator defenses that may be sensitive to ocean acidification (OA). Compromised mechanical integrity of these defensive structures may tilt predator-prey outcomes, leading to increased mortality in the lobstersâ environment. Here, we tested the effects of OA-like conditions on the mechanical integrity of selected exoskeletal defenses of juvenile California spiny lobster, Panulirus interruptus. Young spiny lobsters reside in kelp forests with dynamic carbonate chemistry due to local metabolism and photosynthesis as well as seasonal upwelling, yielding daily and seasonal fluctuations in pH. Lobsters were exposed to a series of stable and diurnally fluctuating reduced pH conditions for three months (ambient pH/stable, 7.97; reduced pH/stable 7.67; reduced pH with low fluctuations, 7.67 ± 0.05; reduced pH with high fluctuations, 7.67 ± 0.10), after which we examined the intermolt composition (Ca and Mg content), ultrastructure (cuticle and layer thickness), and mechanical properties (hardness and stiffness) of selected exoskeletal predator defenses. Cuticle ultrastructure was consistently robust to pH conditions, while mineralization and mechanical properties were variable. Notably, the carapace was less mineralized under both reduced pH treatments with fluctuations, but with no effect on material properties, and the rostral horn had lower hardness in reduced/high fluctuating conditions without a corresponding difference in mineralization. Antennal flexural stiffness was lower in reduced, stable pH conditions compared to the reduced pH treatment with high fluctuations and not correlated with changes in cuticle structure or mineralization. These results demonstrate a complex relationship between mineralization and mechanical properties of the exoskeleton under changing ocean chemistry, and that fluctuating reduced pH conditions can induce responses not observed under the stable reduced pH conditions often used in OA research. Furthermore, this study shows that some juvenile California spiny lobster exoskeletal defenses are responsive to changes in ocean carbonate chemistry, even during the intermolt period, in ways that can potentially increase susceptibility to predation among this critical life stage
Optical Properties of Deep Ice at the South Pole - Absorption
We discuss recent measurements of the wavelength-dependent absorption
coefficients in deep South Pole ice. The method uses transit time distributions
of pulses from a variable-frequency laser sent between emitters and receivers
embedded in the ice. At depths of 800 to 1000 m scattering is dominated by
residual air bubbles, whereas absorption occurs both in ice itself and in
insoluble impurities. The absorption coefficient increases approximately
exponentially with wavelength in the measured interval 410 to 610 nm. At the
shortest wavelength our value is about a factor 20 below previous values
obtained for laboratory ice and lake ice; with increasing wavelength the
discrepancy with previous measurements decreases. At around 415 to 500 nm the
experimental uncertainties are small enough for us to resolve an extrinsic
contribution to absorption in ice: submicron dust particles contribute by an
amount that increases with depth and corresponds well with the expected
increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The
laser pulse method allows remote mapping of gross structure in dust
concentration as a function of depth in glacial ice.Comment: 26 pages, LaTex, Accepted for publication in Applied Optics. 9
figures, not included, available on request from [email protected]
The Energy Spectra and Relative Abundances of Electrons and Positrons in the Galactic Cosmic Radiation
Observations of cosmic-ray electrons and positrons have been made with a new
balloon-borne detector, HEAT (the "High-Energy Antimatter Telescope"), first
flown in 1994 May from Fort Sumner, NM. We describe the instrumental approach
and the data analysis procedures, and we present results from this flight. The
measurement has provided a new determination of the individual energy spectra
of electrons and positrons from 5 GeV to about 50 GeV, and of the combined
"all-electron" intensity (e+ + e-) up to about 100 GeV. The single power-law
spectral indices for electrons and positrons are alpha = 3.09 +/- 0.08 and 3.3
+/- 0.2, respectively. We find that a contribution from primary sources to the
positron intensity in this energy region, if it exists, must be quite small.Comment: latex2e file, 30 pages, 15 figures, aas2pp4.sty and epsf.tex needed.
To appear in May 10, 1998 issue of Ap.
Social support among people with mental illnesses on probation
Objective: Justice-involved people with mental illnesses, in general, experience poor criminal justice outcomes (i.e., high rates of recidivism and probation revocations) and are at increased risk of homelessness, unemployment, stigma, trauma, and poor physical health. Low social support is repeatedly associated with worse mental health outcomes in the general population but little is known about social support among probationers with serious mental illnesses. Method: To address these gaps in the literature, we used an observational cross-sectional study design and data from a large, randomized controlled trial of specialty mental health probation to examine self-reported social support and its relationships with mental health functioning and other outcomes for individuals with serious mental illnesses on supervised probation. Results: Probationers who self-reported lower levels of social support also reported greater mental health symptomatology and reported lower quality relationships with their probation officers. Conclusions and Implications for Practice: Low social support among probationers with mental illnesses has important implications for mental health and criminal justice practice and policy. Coordinating services between the criminal justice and mental health systems to offer opportunities for social support and meaningful community engagement for those with mental illnesses who are on probation could improve a number of mental health and criminal justice outcomes for this population. Peer support and supported employment services, for example, in addition to outpatient mental health services, could be two strategies that could address social isolation and help individuals living with mental illnesses optimize their recovery and rehabilitation
The Prevention of Lower Urinary Tract Symptoms (PLUS) in girls and women: Developing a conceptual framework for a prevention research agenda
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146323/1/nau23787_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146323/2/nau23787.pd
The AMANDA Neutrino Telescope: Principle of Operation and First Results
AMANDA is a high-energy neutrino telescope presently under construction at
the geographical South Pole. In the Antarctic summer 1995/96, an array of 80
optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths
between 1.5 and 2 km. In this paper we describe the design and performance of
the AMANDA-B4 prototype, based on data collected between February and November
1996. Monte Carlo simulations of the detector response to down-going
atmospheric muon tracks show that the global behavior of the detector is
understood. We describe the data analysis method and present first results on
atmospheric muon reconstruction and separation of neutrino candidates. The
AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97
(AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.Comment: 36 pages, 23 figures, submitted to Astroparticle Physic
- âŠ