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Some General Properties of Stimulated Raman Propagation

With Pump Depletion, Transiency and Dispersion

B. W. Shore, S. Lowder and M. A. Johnson

, Lawrence Livermore National Laboratory
Livermore, CA 94550

This note considers some of the properties of the Stokes pulse that grows from a specified
seed pulse in the presence of a strong pump pulse as it propagates through a dispersive
atomic vapor.

1. We first present a generic dimensionless form for the coupled equations that govern the
propagation of pump and Stokes fields for collinear plane-wave pulses. By treating the two
fields we permit pump depletion. We include transient atomic response (as embodied in the
Raman coherence), but neglect changes in atomic populations. (Thus our equations pertain
to the regime in which atoms are more numerous than photons.)

The equations employ a gain length, a dispersion time rais, and a Raman coherence
time (or memory time) rR as basic parameters: these two times, together with a single-
photon stationary-atom detuning A, subsume the details of a particular atomic Raman
transition and particular operating conditions. (The effects of Doppler shifts enters the
equations through the coherence time.)

2. We discuss some general properties of these generic Raman propagation equations, and
present illustrations of their solutions in the absence of dispersion. We comment on depar-
tures from exponential growth.

3. We then show examples of behavior when dispersion is present and the pump pulse has
a bandwidth that exceeds the transform limit.

4. The illustrations presented here do not pertain to any specific atom (i.e. specific
wavelengths and oscillator strengths) or to specific experimental conditions (i.e. number
densities and pulse intensities.) To permit the connection between the present generic res-g

ults and particular experiments we conclude by providing expressions for the gain length
and dispersion time in terms of atomic number density, polarizabilities, oscillator strengths,
statistical weights, transition frequencies, and polarization directions.
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§1 Introduction and Definitions
w

A strong pulse of radiation passing through an atomic vapor will generate pulses at a vari-
ety of other frequencies. We here consider those frequencies (Stokes radiation) that differ
from the pump frequency by some two-photon (Raman) transition energy. For simplicity
we consider only two frequencies, associated with the pump and a single Stokes pulse; we
neglect anti-Stokes radiation as well as higher e'der Stokes radiation. In particular, we here
consider the Stokes radiation as it grows from a weak seed pulse under the influence of a
strong pump pulse, under idealized conditions of a dilute atomic vapor.

w

§L1 Basic Equations

Consider the propagation of collinear pump and Stokes plane waves, both travelling alongt

the z axis, as described by optical carriers (at frequencies COpand ws) and slowly varying
electric-field envelopes o"e(Z, t) and oPs(Z,t), in the absence of population or field polari-
zation changes. Let the time variable t be measured relative to the front edge of a fiducial
(light-speed) pulse, i.e. we employ a window that moves at the speed of light in vacuum,
c. Under these conditions the equations governing the pump and Stokes fields may be
written as

:.

O's(Z, t) = - iSrf.So_S(Z, t )Oz

oo

- rYes(Z) I dt" tJ(t-t') oPp(Z,t')* OPs(Z,t')oPe(Z,t) (l.l-la)--(_

0 6'p(Z,t) = -iSU,pOap(Z,t)Oz

oo

+ rW;p(:) [ dt" ft(t-Y) _p(Z,t')oPs(Z,t')* 6's(:,t ) (1.1-1b)
d-O0

where, as discussed below, 5Us and 5Up are linear operators responsible for dispersion,
_°(r) is the memory function for Raman coherence, w is the Raman inversion (_v - -1 for
cold matter) and the coupling parameters _;/,(z) and _s(Z) are proportional to frequencies,
atomic number density. V'(:), and to the squares of polarizabilities. The envelopes are nor-
malized so that pulse intensities are (cgs units)

a

Is(:,t>= s(:,t) - zp(:,o= lCp(:,t)l'-. (I.1-2)

" The equations above present two contributions to puls.-' changes: a dispersive effect
(involving c.9f4._) and a Raman effect (involving coupling with another field). When the dis-
persive part does not include loss then the equations maintain a constant value of the
quantity
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Is(Z,t ) tp(Z,t)
+ _ ---constant. (1.1-3)" ,Cs(Z) ,_e(z)

This condition, iritepretable as conservation of photons, places an upper limit on the
growth of a weak Stokes pulse.

Objeetive_

, The equations above, taken with various simplifications, have been studied exten-
" sively, and various analytic solutions are known for special cases. Most commonly, the

equations are solved without the dispersive terms, although special cases are soluble with
dispersion. When the effect of the Stol :s radiation upon the pump is negligible (the

. undepleted pump approximation) and _he relaxation is homogeneous [i.e., the memory
function ft(r) is an exponential function of r], then there are known analytic solutions in-
volving integrals of modified Bessel functions• When the relaxation time is very short, then
simple solutions exist even with pump depletion (see below). Our concern here is with
numerical solutions that include dispersion, transiency and pump depletion.

One desires solutions that emerge from a specified strong pump pulse and weak seed
Stokes pulse at z - 0. In partic_flar, one wishes to know how the pulse fluences

Fs(z)= Idt Is(z,t), Fp(z)= fdt Ip(z,t) (1.1-4)

depend on various conditions, such as atomic density and temperature, pump pulse shape
and fluence, and atomic polarizabilities and frequencies. These quantities, plotted as a
function of distance z, reveal the growth of Stokes radiation and the loss of pump radia-
tion. To understand details of the Raman process one requires, in addition, more detailed
plots of pulse shape or pulse spectrum at a given distance.

Experiments with stimulated Raman scattering typically deal with two classes of initial
conditions: either the Stokes seed is generated explicitly, and can be controlled along with
the pump, or else the Stokes grows from spontaneous emission (quantum noise). Our con-
cern in the present note will be the interplay between a few of the adjustable parameters
that characterize pump and Stokes radiation. We shall not consider details of Stokes growth
from noise (such considerations require, amongst other things, a specification of spatial
geometry in order to count the number of spatial modes that should be incorporated into
the idealized plane wave model). However, we shall consider examples of noisy Stokes seed
pulses.
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, §1.2 Dispersive Effects

The same induced dipole moments that produce Raman scattering, as parameterized by the
quantities _;_(z), also cause dispersive effects such as altered phase shifts, group velocity,
and pulse distortion. Our interest is with a pump field that is nearly resonant with a single-
photon atomic resonance line, so that only a single excited state (or set of degenerate
states) contributes to the atomic polarizability. Suppose the two-photon Raman transition
links an initial state 1 with a final state 2 via off-resonant transition to an excited state 3.

. The carriers for the pump transition 1 _ 3 and the Stokes transition 2 _ 3 are each
detuned from single-photon resonance by the angular frequency A,

. hA = E 3 - E 1 - hoJp ffi E 3 - E 2 - hw s (1.2-1)

so that (by definition) the two-photon Raman process is exactly resonant for the carriers.

Under these conditions the effect of the dispersive operator 5_"x may be written as

[ / 0 ] ,:%"_d'x(z,t) =K_(z) 1 + _-_-+ ... N_kz, t) (1.2-2)

where the ellipsis ... denotes an infinite series of time derivatives. For consistancy, the
dispersion should be accompanied by absorption. This can be accomplished by making the
replacement A ---, A -ii" where I" is the single-photon loss rate. We here take this absorp-
tion to be negligible.

Interpretation

The z dependence of Kx(z), like that of _x(z), enters as a proportionality to atomic den-
sity. For constant density Kx defines a length I/K x over which the envelope phase changes
by one radian. The ratio wa/Kx is the conventional phase velocity. The first derivative
term of this series expresses the incremental group velocity vex with which a pulse shifts in
the reference frame (moving with velocity c):

1 .. K_..3__ (1.2-3)
v';_ A "

Higher terms account for distortion of the pulse (e.g. amplitude modulation resulting from
initial phase modulation).
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§L3 Alternative Variables
ii

As written, the equations refer to a specific pair of transitions (whose oscillator strengths
and frequencies enter through the parameters _¢pand tcs), to particular relaxation condi-
tions (as embodied in the memory function), to particular density (through tcs and tcp) and
to a particular pump pulse (as embodied in pulse shape, pulse duration, and pulse fluence).
It often proves advantageous to replace the variable dx, whose dimensions are statvolts/em
in the traditional cgs system, with alternative variables that permit generic discussion of
results. For this purpose we introduce the amplitude variables

a)

Ys(z,t) - as oPs(Z,t), Yp(z,t) -- al, oPp(z,t) (1.3-1)

and coupling parameters

g(z) = 2tcs(Z)rR tCp(Z) (at, )z
(at,) z , R- tcs(Z) (as) _ (1.3-2)

where rR is the Raman coherence time,

oo/,

rR -- [ dr ft(r), (1.3-3)
d

so that the fundamental equations (1. I-1) become

oo

Ys(z,t) =-i _Sr_'sYs(z,t)- frg(z) Yp(z,t) I dt...._"ft(t-l) Yp(z,t')* Ys(z,t')az -oo rR

(1.3-4)

oo

O f dt" •O'z'.-Yp(C,/) -" -i 15rff'pYp(_.,t) + Fa Rg(z) Ys(z,l) _ _(t-t') Yp(z,t')Ys(z,t" ) .
_oorR

With these definitions the steady-state Stokes gain coefficient (an inverse length) for a
(square) pulse of constant intensity passing through a uniform density is

Gss = 2tcs rp, Ig'p(o,t)12= g Irp(o,t)l= (1.3-5)

" The intensity of a weak Stokes field, driven by such a square pulse, will grow exponen-
tially by one neper = exp(1) in a distance z = 1/Gss.
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§L4 Particular Choice

Both the magnitudes and dimensions of the new envelope variables Yx remain to be
chosen. It proves useful to express each envelope as a fraction of the mean initial pump
envelope. Specifically, we let the variable I_(z,t)lz be the ratio of actual intensity to in-
itial mean pump intensity (assuming ?ump pulse duration Te for fluence Ft,),

cTp Ye(z,t) -- OPp(Z,t) 81rFp(0) (1.4-1)rs(z,t) = _s(Z,t) 8rFe(0)'

With these definitions we have the assignments

(as )z = (ap )z _. cTe
8rFe(0 ) (1.4-2)

and the dimensionless envelope variables Yx are normalized such that at z - 0

Ia Fs(O) It IYs(O,t)lz - rp Fp(O)' at IY_(O,t)l'-- Te. (1.4-3)
• o

With this normalization a (square) pump pulse of constant amplitude and duration T e is
characterized by an envelope of unit amplitude

Yp(0,t) = 1 for 0 < t < Tp. (1.4-4)

The pulse fluences (time integrated intensities) at position z are

rFe(O) r
Fs(Z)= [dt [Ys(z,t)l z, Fp(Z)" Fp(O) [dt IYe(z,t)l 2 (1.4-5)

re j. re j.

and the propagation parameters are

87rFp (0) tO_.p.p

g(-) = 2_s(Z) cTp rR' R = Ws. (1.4-6)

When the atomic number density is uniform then g is the steady-state gain coefficient for
- a pulse of constant intensity and duration Tp:

g = G_s (square pulse, uniform density) (1.4-7)
w

Either the dispersion length 1/Ka or the Stokes steady-state gain length l/g may be
taken as the unit of length. Because our primary concern is with the growth of Stokes rad-

- iation, we choose to measure distance in units of l/g by introducing a (dimensionless) dis-
tance scale (sometimes termed the gain-length product)
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.Z ,Z

. Z= I dz g(z,)_ J dz_s(Z,)16_'Fp(0)0 0 CTp rR" (1.4-8)

The integration reduces to the product gz when the atomic density remains constant, and it
permits the treatment of more general situations in which density varies along the path.

In piace of the dispersive length scale/(x we introduce a dispersion time for the pump
pulse,

o

1 Kp(z) Kp(Z) crp 1

rais = gv'-'-_= g(z)A- _s(Z) 167rFp(0)rRA (1.4-9)

and a ratio of Stokes to pump dispersion,

Ks(z) (1.4-10)
= Ke(z)"

Interpretation

The value Z - 1 corresponds to a distance (the steady-state gain length) such that for
short Raman relaxation time in a uniform medium a square pump pulse, of fluence Fp (0)
and duration Tp, will produce one neper of growth in a weak Stokes pulse.

When the pump pulse has propagated this distance (z --- l/g, one steady-state Stokes
gain length, Z --- 1) the incremental group velocity will cause the pulse to appear to drift
by time ruis in the (moving) reference frame. In the same distance the Stokes pulse will
tend to drift by qrais.

Basic Equations

With these definitions the fundamental equations read

[ ;o ]O--zYs(Z't)=if[rdisA] 1 + _-_+ ... Ys(Z,t)

I"

-_z rv YP(Z, t) I at__.["ft(t-d) Yp(Z,t')* Ys(Z,t') (1.4-1 la)
J -oo rR

!

o___(z,t) = i [rai,/x I + .frg + rp(Z,t). OZ "'"

oo

+_zrv R Ys(Z,t) r di" tj(t_t, ) yp(Z,t,)Ys(Z,t,)," (l.4-11b)
J-co rR
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These dimensionless equations are the ones we consider. They involve dimensionless pulse
shapes Yx(z,t) whose time=averaged magnitude is fixed by Eqn. (1.4-3). Full specification

" of the incident pulses requires a pulse duration Te (say the interval between half power
points of the intensity), a bandwidth and other such parameters. Ali atomic properties
enter through the dimensionless memory function _'(r), the ratios R = (Ws)/(w P) and f,
and the time scales rR, rais and I/A. Because the Stokes dispersion comes primarily from
excitation of level 2 (whereas the pump dispersion comes from initially populated level I),
propagation through cold matter has £ - 0. The mean population difference between levels
I and 2 enters as the fixed Raman inv ,rsion P,,.

" Conservation of Photons

It is noteworthy that these equations maintain a fixed value of the dimensionless
- quantity

G(t)--Ire(z,t)l"+ R[Ys(Z,t)l z. (1.4-12)

When the incident Stokes field is much weaker than the pump field (as is the case of
interest) we have the properties

G(t)_-Ir (0,01"-- RlYs(oo,t)l2 (1.4-13)

dt a(t)= Tp. (1.4-14)

The conserved photon flux (photons per unit area per unit time) is

lt,(O,t) Fp(O) G(t). (1.4-15),)(t)= =

The total number of photons per unit area (also conserved) is

I Fe(O)dt ep(t) : hwp (1.4-16)

These conservation properties provide a useful check on numerical results.

Simplification: R = 1
i

Without altering significant physics we may choose R = 1. This is equivalent to choosing
the Stokes variable to be

Ys(z,t) = 4-R Ys(Z,t) (1.4-17)

- and amounts to using photon numbers rather than intensities as the variables of direct in-
terest.
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§1.5 Dispersionless Steady State

An important limiting case of Raman propagation occurs when dispersion is negligible and
the relaxation time is much shorter than other time scales. Under these conditions, and for
cold matter (_ ----1) we deal with the steady-state dispersionless equations

a
a_ _s(z,t) - • ilre(z,t)l' rs(Z,t) (_.5-_a)

0
" a-_ve(z,t)= - IR IYs(Z,t)l'Ye(z,t). (1.5-1b)

These coupled equations have the well-known analytic solution

iys(z,t)lz _ iYs(O,/)lz[IYe(o,t)lz+ RlYs(O,t)lz]exp[G(t)Z]IYe(0,/)lz+RlYs(0,t)}'exp[G(t)Z] (1.5-2)

where

G(t)= Ire(0,t)lz +Rlrs(0,t)lz (1.5-3)

is proportional to the incident photon flux. This Stokes field exhibits exponential growth at
small distances (G(t)gz << 1),

IYs(Z,t)l'-. Irs(O,t)l'exp[G(t)z] (1.5-4a)

and saturation at large distances (G(t)gz >_, 1),

]Ys(Z,t)l'--.Ire(o,t)l'_+RlYs(O,t)l' (1.5-4b)

This analytic solution provides a convenient reference for examination of propagation
under less restricted idealization.
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§2 Numerical Examples, No Dispersion

We next present a number of examples of solutions to these propagation equations,
obtained by numerical integration, for a variety of conditions. These examples do not nec=

. essarily represent any particular Raman transitions in particular atoms under any proposed
experimental conditions. Rather, they are chosen to illustrate general principles.

In ali of the computations presented here the memory function _'(r) is taken to be the
exponential exp[=r/r R ], corresponding to a Lorentzian profile for coherence relaxation. The

, Lorentz profile is appropriate for homogeneous relaxation. We have examined other cho=
ices, including the conventional Doppler profile that leads to a Gaussian form for the
memory function. Although there are observable differences between different forms for
the memory function, the qualitative features that we discuss here occur for any form.

For simplicity we take the ratio of Stokes to pump frequencies to be unity for all cal=
culations, and we always assume that the Stokes wave propagates without dispersion,

R=I, _'=0.

We take as our unit of time the nanosecond (rather than, say, the pulse duration or the
relaxation time). We take the pulse duration Tp to be the interval between the half power
points of the intensity Ie (0, t) of the incident pulse.

To exhibit pump depletion phenomena we take the initial Stokes seed fluence to be
smaller than the initial pump fluence by exp(=10) = 4.5 x 10-s, so that for a steady-state
square pulse and no pump depletion the initial seed would become equal to the pump after
I0 gain lengths. We typically show results of propagation to Z = 20, twice this saturation
length.

We present plots of several things. To exhibit the exponential growth of Stokes fluence
we show, as a function of gain length Z, the relative fluences of pump and Stokes pulses,
expressed as photon numbers relative to the incident pump fluence. We express these flu=
ences as relative photon numbers (in these units the incident pump fluence is 1.0 and the
incident Stokes fluence is e -I0) On separate plots we show the square of the relative pulse
magnitudes, [Ya(Z,t)12, together with the relative power spectra (the absolute square of the
Fourier transform of the pulse envelope). For a few cases we show the envelope magnitude
and phase, and the magnitude of the Fourier transform of the pulse envelope. Because we
express time in nanoseconds, the frequency scale is Ghz.

Dispersionless Examples

For the calculations of this section we neglect all pump dispersion, l'disp = 0, and we
" exhibit pulses in a window 200ns long. Because there is no dispersion, pulses remain cen-

tered in this window. We typically take the pump pulse to have duration Tp = lOOns.

=)
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§2.1 Saturation Effects

We first consider propagation with a short relaxation time. We construt.t a pump pulse with
constant phase of duration Tp = lOOns, so that the pulse bandwidth is transform limited.
We take the Raman coherence time (the memory time) to be rR = Ins, so that the relaxa-
tion time is much shorter than the pulse duration but is not zero. We expect that, under
these circumstances, the pulses will be governed to a good approximation by the steady-
state equations. In particular, we expect to see initially exponential growth, followed by
saturation.

q) ..

We consider a pulse whose envelope is a gauss-16 hypergaussian [i.e. whose amplitude
varies with time as the exponential of (t-to)x° ]. This is nearly, but not exactly, a square
pulse. We take a Stokes seed whose shape and phase is identical with the pump. Then we

" find that the Stokes fluence, like the Stokes intensity, obeys very closely the saturation
solution. The pump fluence remains fairly constant at first, but ultimately converts, within
a few gain lengths, to Stokes radiation. For the particular choice of seed used here, an in-
itial fluence of e -1°, the conversio:a is half completed after 10 gain lengths.

see Figure D

This figure displays four curves. First, it shows (dashed and labelled "pump") the pump
fluence as it starts from given incident value (a relative photon number 1.0) and subse-
quently converts to Stokes radiation. Next, it shows (solid and unlabeled) the numerically
calculated Stokes fluence (starting from e-l°). The dashed curve (long dashes) labelled
"steady" is the Stokes fluence that would have occurred if the coherence time had been in-
finitisimally short. The dashed curve (short dashes) labelled "square" is the analytic expres-
sion for the Stokes fluence that would occur if the coherence time had been infinitisimal
and the pump had been exactly square (with the given fluence).

It can be seen from this figure that for this particular example the assumption of
steady-state growth gives an excellent description of the Stokes fluence, and that the
assumption of a square pulse introduces only a small (but quite perceptible) error.

The exponential nature of the initial Stokes growth can be seen much more clearly on
a semilog plot of Stokes fluence vs. distance. On such a plot we can also see clearly that,
whereas the steady-state solution predicts complete conversion of pump to Stokes radia-
tion, the actual pump depletion is not complete. The discrepancy is quite obvious on a log-
arithmic plot, but is not so noticeable on a linear plot.

see Figure _-_

The reason for lack of complete pump depletion can be seen in a picture of the pump
envelope as it appears at large Z. Because the memory time is not infinitismal, there is an
interval at the beginning and the end of the pulse, a few memory times in duration, during

" which the pump is not completely depleted. These remnants deplete very slowly with dis=
tance.

see Figure
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§2-2 Pulse Shape Effects

Next we consider cases, still with short memory time and without dispersion, in which the
initial pump pulse does not maintain constant amplitude. As before, we take the Stokes
seed and initial pump pulse to have identical initial envelopes, and to have constant phase.
In this case we observe very appreciable differences between the actual numerical solution
and the analytic solution for the square pulse.

see figure
o

We find that the Stokes initially grows exponentially, but the gain length is longer thnn one
would estimate for a square pulse of equal fluence. Saturation occurs, but at a later time
than for the equivalent square pulse.

see Figure [_

Evidently the gain length, defined in terms of a square pulse, does not accurately describe
the fluence of a pulse that is not square. This is to be expected: the time integral of an
exponentiated time variation is not the same as the exponential of a time integral.

Plots of pulse intensity for pump envelopes that are not square show the effects of transi-
ency on Stokes shape and on pump depletion.

see figure [_
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. §2.3 Correlation Between Seed and Pump

When the initial Stokes seed differs in phase or in shape from the initial pump envelope
. then the initial growth of the fluence is not exponential: only after a few gain lengths does

exponential growth of fluer.ce set in.

As an example, we ex_tmine, for a hypergaussian pump pulse with constant phase, a
Stokes seed that is constant (and has constant phase) within the entire time window. Only

, that portion of the Stokes envelope that overlaps the pulse can undergo growth; this por=
tion grows exponentially. Once appreciable growth occurs, the Stokes pulse does not
depend on the duration of the seed.

see Figure _

As another example of the importance of correlation between pump and Stokes seed,
we modify the previous case by introducing a varying phase for the pump, so that the
pump bandwidth exceeds the transform limit. We expect that only a fraction of the pump
spectrum will overlap the Stokes seed and produce exponential growth.

see Figure ['_

The presence of pump phase variation, together with a finite memory time, produces a
modulation of the amplitude of the Stokes pulse. The period of this modulation coincides
with the warble period of the pump. This amplitude variation, in turn, causes a corres-
ponding modulation of the pump depletion.

see Figure [-_

In each of these cases the behavior is (approximately) as if only some fraction of the
Stokes seed fluence undergoes exponential growth. An estimate of this fraction is the
Stokes-pump correlation,

] f.dt o_p(t)*O_s(t)[*
Iol - (2.3-1/

Idt lo'p(tllz × fat lo's(t)lz
w. • •

This number has been used to draw the fluence curves for square-pulse propagation in the
- previous two figures: Those curves are drawn for a hypothetical square pulse whose flu-

ence is smaller than the actual fluence by the amount 1_1z.

Although the correlation is useful in providing a bound, lt _9es not always give a
close estimate. When the seed pulse has large amplitude fluctuations the final pulse will
also exhibit amplitude fluctuations. As extreme example, we seed this same pump pulse
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with a realization of a completely random seed, i.e. an envelope whose succession of com-
plex values are Gaussian random variables with zero mean. Such a seed is what one would
use to model growth from spontaneous emission, although in that case the seed would typi-
cally be smaller than the pump by exp(-30) rather than the present exp(-10). Again we

• observe an initially slow growth of fluence, followed by exponential growth and saturation.
The effective portion of the seed is, in this case, quite small, and exponential growth does
not start until the pulses have propagated some 5 gain lengths.

see Figure ['_
w

The behavior of a random seed exhibits interesting details that are not evident on plots of
fluence. Some of the irregularity of the initial Stokes pulse is maintained as it grows. This,

- in turn, leads to irregularity in pump depletion. Different samples of random seeds will
exhibit different details of time dependence, although these details tend to be lost in loga-
rithmic plots of fluence.

see Figure [-_
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§2.4 Stokes Phase

O

As long as the memory time is shorter than phase or amplitude variations of the pump
envelop_. (and there is :,c dispersion), then the Stokes envelope does not depend on pump
phase. This we can see from the steady-state equations. Whatever initial phase is present inq

the Stokes seed will be preserved with growth. However, a nonzero memory time will
transfer to the Stokes envelope the phase of the pump envelope. With sufficient distance,
the Stokes pulse will acquire the pump phase.

Such behavior can be seen in the Stokes field of the previous example. The initial
• random Stokes phase becomes replaced by the pump phase (in this case a constant phase).

. see Figure

As another example, consider the previous cases (lOOns hypergaussian pump pulse,
Ins relaxation time) with a Stokes seed that is constant in amplitude and phase. We impose
on the pump a sinusoidal phase variation (a warble), such that the bandwidth of the pump
becomes an appreciable fraction of the available frequency window. The propagating
Stokes becomes clearly "marked" with this pump phase.

see Figures _-a_(pump) and _ (stokes)

The presence of pump modulation that does not match the Stokes phase, like the presence
of Stokes seed fluctuations that do not match the pump, slows the initial growth of the
Stokes pulse, as noted previously. (When pump and Stokes share the same modulation, then
the Stokes growth is the same as with narrow bandwith pulses.)

Because the memory time is not infinitisimally short in these examples, some phase
transfers from pump to Stokes. This results in an amplitude modulation of the growing
Stokes pulse and, when pump depletion sets in, an amplitude modulation of the residual
pump pulse, as noted in a previous figure.
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§2.5 Transiency

When the memory time becomes an appreciable fraction of the pulse duration, then
steady-state equations become a poor guide to the behavior of propagation. The leading
edge of the pump pulse is not as effective in producing Stokes radiation as is the subse-
quent portion of the pulse: the induced dipole moment responsible for Stokes radiation is
zero when the pump first arrives, and only after a few memory times does it stabilize at
the value prescribed by the pump. Such transiency diminishes the growth of pulse fluence;
only a portion of the pump produces exponential growth. The effect is not simply a
decrease in the rate of exponential gi'owth, as it is with pulse shapes that are not square.
Rather the fluence growth is slower than any exponential. We illustrate this effect with
examples of a hypergaussian pump, zero phase, and constant Stokes seed, for coherence
times rR = 10ns (10 percent of the pulse duration) and rR - 50ns (half the pulse duration).

With the shorter of these times, rR = 10ns, the departure from steady-state exponen-
tial growth is quite noticeable in a semilog plot of Stokes fluence.

see Figure _

Plots of pulse shape reveal, as would be expected, slower rise of the Stokes pulse and con-
sequently a larger remnant of the leading edge of the pump pulse. The plots also reveal, at
the leading edge of the Stokes pulse, a tendency toward a ripple.

see Figure ['_

The effects of transiency become quite pronounced as the coherence time becomes

comparable to the pulse duration, as in the examples for which rR = 50ns. The Stokes flu-
ence growth is much slower than with shorter coherence times.

see Figure [-_

For long memory times the Stokes pulse acquires a characteristic transient shape, so long as
pump depletion remains negligible.

see Figure [-_

As pump depletion sets in, the Stokes and pump each exhibit the ripple behavior noted
above.

see Figure [-_
B

i i
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§3 Dispersion

This section presents examples of Raman processes in the presence of dispersion. We now
must consider the dispersion time rdis and the pump bandwidth as well as the memory

. time rR and the pulse duration Tp.

As above, we take R = I, f = 0. For illustrative purposes we take the detuning A = 50
ns-1 (corresponding to 27rA = 8Ghz).

Because dispersion causes the pump pulse to drift in the reference window, it is nec-Ii)

essary to extend the window further than for nondispersive calculations. We here take a
time window of 300ns. In the distance Z = 20 a dispersion time of rais = Ins will produce,
by differential group velocity, a drift of 20ns.

§3.1 Dispersion Without Modulation

Dispersion alone has the following effects. First, it adds a constant to the preexisting phase.
This has no observable consequence for Raman processes. Second, it causes a drift of the
entire envelope relative to the temporal location it would have in vacuum. This is the
effect of group velocity. Third, it introduces distortion (modulation) of the preexisting
phase and amplitude. This occurs particularly when the pulse has phase variation (i.e.
appreciable bandwidth).

Dispersive propagation of an unmodulated pulse delays the pulse, in the reference
window, but does not distort the envelope. The pulse delay actually permits more effective
growth of the Stokes radiation at the back end of the pump. Consequently the fluence
growth does not differ noticeably from that of nondispersive propagation. As an example,
consider the pump to be a hypergaussian (nearly square) with constant phase and a disper-
sion time of rais = 5ns The resulting fluence growth of Stokes radiation is similar top
steady-state exponential growth, but there are apparent differences as weil. In particular,
there is little pump depletion.

see Figure 10a

The behavior of these pulses can be understood from plots of pulse shape. In the absence
of Stokes radiation, dispersion moves the pump pulse steadily in the reference window, at
a speed of 5ns per gain length, without noticeable change of shape. The growing Stokes
pulse depletes this pulse slightly at first.

see Figure 10b

As propagation progresses the Stokes removes energy from the front edge of the pump
° pulse but is unable to remove energy from the back edge. Consequently the tail of the

pump, which moves steadily in the reference window, remains less depleted.

- see Figure lOc

Eventually the pump pulse moves entirely out of the original window, and is not able to
produce further Stokes growth.

see Figure lOd.
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§3.2 Dispersion with modulation

We next consider dispersive propagation of a _ump whose bandwidth is appreciable, spec-
ifically a pulse whose phase varies sinusoidally. Dispersion causes the pump to develop

- amplitude modulation. The resulting growth of Stokes fluence is noticably slower than
exponential.

see Figure [_

An examination of pulse envelopes reveals the importance of phase modulation. Within a
few gain lengths the sinusoidal phase modulation becomes a sinusoidal amplitude modula-
tion. This pump amplitude variation leads, in turn, to strong modulation of the Stokes

• amplitude.

see Figure ['_

As propagation continues, and the pump modulation becomes more severe (as well as
drifting in the reference window), the pump becomes less effective at producing Stokes
radiation,

see Figure 11_
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§3.3 Summary

When the relaxation time is short and dispersion is negligible, the simple saturable analytic
expressions give reliable estimates of Stokes fluence growth. The Stokes fluence grows
exponentially, after an initial period of slow growth, until it bcomes comparable to the in-
itial pump fluence.

Departures _f pulse shape from square can be accounted for by introducing an alternative
estimate of pulse duration, in piace of the half-power points.

o

When the Stokes seed differs from the pump pulse, the correlation function provides a
rough estimate of the fraction of the seed that will undergo growth.

" The Stokes pulse tends to acquire the shape and the phase of the pump.

Amplitude noise on the Stokes seed remains in the amplified pulse.

Both transiency and dispersion (for pump with appreciable bandwidth) cause the Stokes
fluence growth to be slower than exponential.
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. §4 Raman Parameters

To establish connection between the generic results of the dimensionless equations and
specific experiments we need to evaluate the gain length and the dispersion time. These
two quantities, through their definition in terms of the quantities 5rg"x and gx(z) that
appear in the original equations, serve as the principle collection of depencence upon den-
sity, wavelength and oscillator strengths.

§4.1 Memory Function

We also require the memory function ff'(r). By definition, this function is the Fourier
transform of the two-photon Doppler distribution j, xz(6):

/J(r) - f d6 exp[-ir6 -rl2r] (4.1-1)

The homogeneous relaxation rate I'xz that occurs here combines the collisional relaxation of
the Raman coherence with a radiative decay rate from level 2. Both of these are much less
than the Doppler width for tenuous vapor and opt':al excitation, but they are the domi-
nant processes at higher density (as is assumed for the plots of the present paper)• The
normalizations are

I d6 _¢_2(6) = 1 = ,__(0) (4.1-2)

so that the time integral of the memory function is the Raman coherence time:

I ,.

rR = dr ft(r) = 7rj12(0 ). (4.1-3)

For a conventional (Gaussian) Doppler profile whose full width at half maximum is Av D
hertz the coherence time is

J ln2 1 (4•I-4)rR = _. AuD"

The profile jlz(6) need not be Gaussian; it may indeed be Lorentzian or hypergaussian.
, Whatever the functional form of j_z(6) and ft(r/, Eqn. (4•1-3) defines the memory time.
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§4.2 Propagation Parameters: Polarizabilities

The dispersive parameters Kx(z) and the Raman gain parameters _x(z) may be written
in terms of averaged single-atom polarizabilities otpp,(A,A')and atomic number density ./V"
= .A/"1 + rV"2

Kv (z) = 2_v •Arx(z) {an(P, P)}

" Ks(z ) = 21rw----_s.A/'_(z) {c=m(S,S)} (4.2-1)C

. _I"WS

,s(Z)--

,ce(z)= wp ,_s(Z)
Ws

From these formulas we evaluate the gain coefficient and dispersion time, defined as

e_rFp(0)
g(z) = 2_s(Z) cTp re (4.2-2)

Kp(:) cTp 1
rais = Xs(: ) 81rFp(0) rRA (4.2-3)

where Fp(0) is the incident pump fluence and Tp is the initial pump pulse width. The res-
ults are the formulas

FBr2] Fv(O)
g(-)= Lc,J (l%,(P,S)l'} _ Ws,R (4.2-4)

[hc] Te {%,(P,P)' N', we 1rais= 2-_ Fp(O) {1%2(P,S)]2} AI" ws rna (4.2-5)
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{}4.3 Dipole Transition Strengths

For near resonant propagation involving a single virtual level (level 3) and in whicq
the detuning A is constrained by Eqn. (1.2-1), the polarizabilities are expressible in "*.rms
of the Condon and Shortley dipole transition strengths Sab, statistical weights ga and a
dimensionless quantity d' (of order unity) that incorporates ali dependence on polarization
directions. We use the formulas

(eao)2 Sxa

- { c_xx(P'P) }= hA 3g--_x

(eao)Z S2a
(4.3-1)

" {_z2(S'S) }= hA 3gz

{ 1%2(P,S)] 2 } - { %_(P,P) } x { %2(S,S) } _r_(s,P)

(eao)4 $13 $23

- (hA) 2 3g1 x _ ,.Px=(S,P)

and the Sommerfeld fine structure constant _ - e2/hc to write

Ke(z) = [2raao2 ] .A/'l(: ) W__e..pSx.....2a
A 3gx

KS(Z) = [21r_ao2]-/V'z(:) Ws Sz3 (4.3-2)
A 3g_.

I ra2Cao4] ws $13 Sz3 d'x,.(S,p)_¢s(:) = _ .j ./v'(:) Az 3g 1 3g z

The gain and dispersion parameters are expressible as

" ws "rR Sxa S_a d'I_.(S,P) (4.3-3)g(z) = -- .A"(:) (_-Fp(O) Tp 3g x 3g_.

h Tp "A/'I we 3gz 1rctis = 27r_cao2 rRFP(O) rV" ws Sza d'lz(S ,P) (4.3-4)
m

K s(:) .,,1/'_._s gl Sz3
q -- -- - (4.3-5)

. Kp(,=) .eV"1 top g2 Sla

Note that the pump dispersion time 7"dis is independent of the detuning A and of distance
z (because the ratio. _'_/.Ar is taken as uniform).
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§4.4 Oscillator Strengths

An alternative choice for expressing atomic dipole transition moments is the
(absorption) oscillator strengths fat,,

o

s,, <4.4_,>fla = Ap 3g l' f2a = AS 3g2

. Using these we write

vV',(z)
. Kv(z) = Pr'_2Cao] A S,a

(4.4-2)

Ks(Z ) - [a-a2Cao] vV'2(z)A f,a

r cc4C2ao21,<s,=>-L_ j @" i,:i,:,.s.,.(..<.,,>>
and hence

g(z) = [2zZa4cZao2] _ Fp(O) rR fxa f2a _£12(S, P) (4.4-3)Az hwv Tp

[1]TphwP Jillrdis = lro_2ca o rR Fp(O) di# f2a _£/z(S, P) (4.4-4)

_"2 f 2a

f = "/V".i.f:l:i (4.4-5)

Note the appearance in these formulas o," the total photon fluence Fp(O)/hwp.
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§4.5 Rabi Frequencies

To facilitate interpretation of coherent excitation we define the instantaneous pump
- Rabi frequency lip for the 1 .-----,3 transition,

flp(Z,t) = oap(Z,t) _-_ (4.5-1)

" A satisfactory definition of the pump Rabi frequency when degeneracy is present is

where fxa is the (absorption) oscillator strength and Sxa is the dipole transition strength. We
introduce the incident mean pump Rabi frequency

[,.7o.]"_x Tp (4.5-0)

so that the formulas for propagation and dispersion parameters become

1o. Sz.a

g(:) = ./V'(:) wsr R za. 3g2 d'x,(S,P) (4.5-1)

4 .Al"1 wp gz Sla 1

rais = rR ./V" '_S gx Sza d'lz(S, P) (4.5-2)(rR fl)z

or

g(:) = _ oz

4 -'_'_1 fla 1

rdis = rR ./V" fza J'12(S,P) (4.5-4)(rR fi)z

,o
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Raman Propagation Equations

0
Oz_s(Z,t) = + i_sgs(Z,t)

,oo

- Xs I dt" ff(t-t') w(z,t')_'e(z,t')* ds(Z,t')_'e(z,t)--00

0
" a_ _p(z,t) = + iSUp OOp(Z,t)

oo

+ ge [ dt" _'(t-t" w(z,t') 5F'e(z,t')ds(Z,t')* _"s(z,t)
,I-00

where

[ ,'0 ]. _'x(t)= 1 + _-b-7+... 6'x(t)
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Raman Propagation Parameters

Dispersive

wp Sza
29rffe°#P - 2rWt'c IV'z {atz(P'P)} _'e = [2r_a°2] "A/'t A 3gz "_'P

ws S2a

" 5rd's°as = 2_rw"-'-LscIV'2 {%2(S'S)} _'s - [2rreao2] -N'2 A 3g2 _'s

. Raman gain

,,s--2-_ _ {l°<,.:,(s:>,s)l")= L 2_ J .,4/'(A),. 3g x 3ez d'xz(S'P)

Wp
tcp = _ k S

COS

The gain coefficient

g = 2,_slse I"rR

{ -7raZcao4 ws rR Sla Sza

g = 2 2h Al" _ Fp(O) Tp 3g x 3g z d'lz(S'P)

3e_ cosrRre(o) s,.3 _c,.

Introduce incident mean pump Rabi frequency

[ -IneI' - 8_ao'- s_ rp(o)
h 3g t Tp

so that

g = [27rCmoZ] ...V"cos rR A2 3gz J'12(S ' p)

6'.0 = 4 .A/" ws i_Pl _ _R,_g_s,.__c..
3e



Saturation Fig. la
nearsquarepulse
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Saturation Fig. lb
near square pulse
short relax
stokes = pump
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Saturation Fig. lc
near square pulse
short relax

stokes = pump
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Shape Fig. 2a
Gauss 2 pulse
short relax
stokes = pump
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Shape Fig. 2b
Gauss 2 pulse
short relax
stokes- pump
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Fig. 2c

Shape Gauss 2 pulse
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stokes= pump

Pump at z = _._.OOE+OI Stokes
o

lD

= • , =

.., _.. • ,, .., 2.
= ,, : =

; ; ,
; • =

I , _1)

a 1. " • o 1.
_ .

1 0-4 10 -4

• .................i I • I 0 =.. • .... _•'='_'P_ I...lla=_ =-i.._ q_a .... _Asm-'i*''=0 ¢_ ,q= e.O oo _ ¢_ _ ¢.0 cO _ " o0 ¢
¢=_ .......... _ .........

3.

03 CA

sem • _=q

1 o

_ 10 410 4

N ......... ..-_, .... • ..... ,- n ........ , ........... .., ....

. I l I I

06-28-91 07'37:49h frame 16 gauss 2 pump = stokes



Correlation Fig. 3
near square pulse
short relax
coast stokes seed
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Correlation Fig. 4a
near square pulse with warble
short relax
conststokesseed



Correlation Fig. 4b
near square pulse with warble
short relax
co_t stokes seed
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Correlation Fig. 5a
near square pulse with warble
short relax
noisestokesseed



Correlation Fig. 5b
near square pulse with warble
short relax
noise stokes seed
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Phase Fig. 6
• near square pulse

short relax
noise stokes seed
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Phase of Pump Fig. 7a
near square pulse with warble
short relax
const stokes seed
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Phase Fig. 7b
near square pulse with warble
short relax
const stokes seed
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Transient Fig. 8a
near square pulse
T relax = I0
conststokesseed
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Transient Fig. 8b
near square pulse
T relax = 10
conststokesseed
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Transient Fig. 9a
nearsquarepulse
T relax= 50
conststokesseed



Transient Fig. 9b
near square pulse
T relax - 50, Z = 20
eonst stokes seed
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Transient Fig. 9c
near square pulse
T relax- 50, Z = 40
conststokesseed
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Dispersion Fig. 1Oa
near square pulse
short relax

conststokes seed
T disp = 5
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Dispersion Fig. 10b
near square pulse
short relax
const stokes seed
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Dispersion Fig. lOc
near square pulse
short relax
const stokes seed
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Dispersion Fig. lOd
near square pulse
short relax

. const stokes seed
Tdisp=5, Z=20
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Dispersion + Warble Fig. lla
near square pulse, warble
short relax
const stokes seed
T disp= I
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Dispersion +Warble Fig. Ub
near square pulse, warble
short relax

. const stokesseed
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06-28-91 15:50:06h frame 7 gaussl6 pump, warble, tdisp = 1



Dispersion +Warble Fig. 11c
near square pulse, warble
short relax

• const stokes seed
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06-28-91 16:01:42h frame 19 gaussl6 pump, warble, tdisp = 1
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