9,589 research outputs found

    Loyalty to relationships: Examination of affluent casino guest retention in Las Vegas

    Full text link
    This paper analyzes the challenges faced by Las Vegas, Nevada casinos when catering to their affluent guests. As part of the literature review, the paper will examine the various retention efforts taken by luxury products and service providers, along with luxury hotels and hotel casinos in Las Vegas. Personal communications with casino hotel executives provides a real-world comparison of the effectiveness and limitations of various techniques discussed in the literature review

    On the formation of current sheets in response to the compression or expansion of a potential magnetic field

    Full text link
    The compression or expansion of a magnetic field that is initially potential is considered. It was recently suggested by Janse & Low [2009, ApJ, 690, 1089] that, following the volumetric deformation, the relevant lowest energy state for the magnetic field is another potential magnetic field that in general contains tangential discontinuities (current sheets). Here we examine this scenario directly using a numerical relaxation method that exactly preserves the topology of the magnetic field. It is found that of the magnetic fields discussed by Janse & Low, only those containing magnetic null points develop current singularities during an ideal relaxation, while the magnetic fields without null points relax toward smooth force-free equilibria with finite non-zero current.Comment: Accepted for publication in Ap

    Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach

    Get PDF
    This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5

    Ballistic-Ohmic quantum Hall plateau transition in graphene pn junction

    Get PDF
    Recent quantum Hall experiments conducted on disordered graphene pn junction provide evidence that the junction resistance could be described by a simple Ohmic sum of the n and p mediums' resistances. However in the ballistic limit, theory predicts the existence of chirality-dependent quantum Hall plateaus in a pn junction. We show that two distinctively separate processes are required for this ballistic-Ohmic plateau transition, namely (i) hole/electron Landau states equilibration and (ii) valley iso-spin dilution of the incident Landau edge state. These conclusions are obtained by a simple scattering theory argument, and confirmed numerically by performing ensembles of quantum magneto-transport calculations on a 0.1um-wide disordered graphene pn junction within the tight-binding model. The former process is achieved by pn interface roughness, where a pn interface disorder with a root-mean-square roughness of 10nm was found to suffice under typical experimental conditions. The latter process is mediated by extrinsic edge roughness for an armchair edge ribbon and by intrinsic localized intervalley scattering centers at the edge of the pn interface for a zigzag ribbon. In light of these results, we also examine why higher Ohmic type plateaus are less likely to be observable in experiments.Comment: 9 pages, 6 figure

    Precise Distributed Satellite Navigation: Differential GPS with Sensor-Coupling for Integer Ambiguity Resolution

    Full text link
    Precise relative navigation is a critical enabler for distributed satellites to achieve new mission objectives impossible for a monolithic spacecraft. Carrier phase differential GPS (CDGPS) with integer ambiguity resolution (IAR) is a promising means of achieving cm-level accuracy for high-precision Rendezvous, Proximity-Operations and Docking (RPOD), In-Space Servicing, Assembly and Manufacturing (ISAM) as well as satellite formation flying and swarming. However, IAR is sensitive to received GPS signal noise, especially under severe multi-path or high thermal noise. This paper proposes a sensor-fusion approach to achieve IAR under such conditions in two coupling stages. A loose coupling stage fuses through an Extended Kalman Filter the CDGPS measurements with on-board sensor measurements such as range from cross-links, and vision-based bearing angles. A second tight-coupling stage augments the cost function of the integer weighted least-squares minimization with a soft constraint function using noise-weighted observed-minus-computed residuals from these external sensor measurements. Integer acceptance tests are empirically modified to reflect added constraints. Partial IAR is applied to graduate integer fixing. These proposed techniques are packaged into flight-capable software, with ground truths simulated by the Stanford Space Rendezvous Laboratory's S3 library using state-of-the-art force modelling with relevant sources of errors, and validated in two scenarios: (1) a high multi-path scenario involving rendezvous and docking in low Earth orbit, and (2) a high thermal noise scenario relying only on GPS side-lobe signals during proximity operations in geostationary orbit. This study demonstrates successful IAR in both cases, using the proposed sensor-fusion approach, thus demonstrating potential for high-precision state estimation under adverse signal-to-noise conditions.Comment: 15 pages, 20 figures, IEEE AERO 2024 (pre-print

    Heterogeneous Nuclear Ribonucleoproteins: Implications in Neurological Diseases

    Get PDF
    Heterogenous nuclear ribonucleoproteins (hnRNPs) are a complex and functionally diverse family of RNA binding proteins with multifarious roles. They are involved, directly or indirectly, in alternative splicing, transcriptional and translational regulation, stress granule formation, cell cycle regulation, and axonal transport. It is unsurprising, given their heavy involvement in maintaining functional integrity of the cell, that their dysfunction has neurological implications. However, compared to their more established roles in cancer, the evidence of hnRNP implication in neurological diseases is still in its infancy. This review aims to consolidate the evidences for hnRNP involvement in neurological diseases, with a focus on spinal muscular atrophy (SMA), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), multiple sclerosis (MS), congenital myasthenic syndrome (CMS), and fragile X-associated tremor/ataxia syndrome (FXTAS). Understanding more about hnRNP involvement in neurological diseases can further elucidate the pathomechanisms involved in these diseases and perhaps guide future therapeutic advances

    The Emergence of a Twisted Flux Tube into the Solar Atmosphere: Sunspot Rotations and the Formation of a Coronal Flux Rope

    Full text link
    We present a 3D simulation of the dynamic emergence of a twisted magnetic flux tube from the top layer of the solar convection zone into the solar atmosphere and corona. It is found that after a brief initial stage of flux emergence during which the two polarities of the bipolar region become separated and the tubes intersecting the photosphere become vertical, significant rotational motion sets in within each polarity. The rotational motions of the two polarities are found to twist up the inner field lines of the emerged fields such that they change their orientation into an inverse configuration (i.e. pointing from the negative polarity to the positive polarity over the neutral line). As a result, a flux rope with sigmoid-shaped, dipped core fields form in the corona, and the center of the flux rope rises in the corona with increasing velocity as the twisting of the flux rope footpoints continues. The rotational motion in the two polarities is a result of propagation of non-linear torsional Alfv\'en waves along the flux tube, which transports significant twist from the tube's interior portion towards its expanded coronal portion. This is a basic process whereby twisted flux ropes are developed in the corona with increasing twist and magnetic energy, leading up to solar eruptions.Comment: 33 pages, 14 figures, Submitted to Ap
    corecore