95 research outputs found
Coronal mass ejections as expanding force-free structures
We mode Solar coronal mass ejections (CMEs) as expanding force-fee magnetic
structures and find the self-similar dynamics of configurations with spatially
constant \alpha, where {\bf J} =\alpha {\bf B}, in spherical and cylindrical
geometries, expanding spheromaks and expanding Lundquist fields
correspondingly. The field structures remain force-free, under the conventional
non-relativistic assumption that the dynamical effects of the inductive
electric fields can be neglected. While keeping the internal magnetic field
structure of the stationary solutions, expansion leads to complicated internal
velocities and rotation, induced by inductive electric field. The structures
depends only on overall radius R(t) and rate of expansion \dot{R}(t) measured
at a given moment, and thus are applicable to arbitrary expansion laws. In case
of cylindrical Lundquist fields, the flux conservation requires that both axial
and radial expansion proceed with equal rates. In accordance with observations,
the model predicts that the maximum magnetic field is reached before the
spacecraft reaches the geometric center of a CME.Comment: 19 pages, 9 Figures, accepted by Solar Physic
Decomposition of the QCD String into Dipoles and Unintegrated Gluon Distributions
We present the perturbative and non-perturbative QCD structure of the
dipole-dipole scattering amplitude in momentum space. The perturbative
contribution is described by two-gluon exchange and the non-perturbative
contribution by the stochastic vacuum model which leads to confinement of the
quark and antiquark in the dipole via a string of color fields. This QCD string
gives important non-perturbative contributions to high-energy reactions. A new
structure different from the perturbative dipole factors is found in the
string-string scattering amplitude. The string can be represented as an
integral over stringless dipoles with a given dipole number density. This
decomposition of the QCD string into dipoles allows us to calculate the
unintegrated gluon distribution of hadrons and photons from the dipole-hadron
and dipole-photon cross section via kT-factorization.Comment: 43 pages, 14 figure
A QCD motivated model for soft interactions at high energies
In this paper we develop an approach to soft scattering processes at high
energies,which is based on two mechanisms: Good-Walker mechanism for low mass
diffractionand multi-Pomeron interactions for high mass diffraction. The
pricipal idea, that allows us to specify the theory for Pomeron interactions,
is that the so called soft processes occur at rather short distances
(r^2 \propto 1 /^2 \propto \alpha'_\pom \approx 0.01 GeV^{-2}), where
perturbative QCD is valid. The value of the Pomeron slope \alpha'_\pom was
obtained from the fit to experimental data. Using this theoretical approach we
suggest a model that fits all soft data in the ISR-Tevatron energy range, the
total, elastic, single and double diffractive cross sections, including
dependence of the differential elastic cross section, and the mass dependence
of single diffraction. In this model we calculate the survival probability of
diffractive Higgs production, and obtained a value for this observable, which
is smaller than 1% at the LHC energy range.Comment: 33pp,20 figures in eps file
A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the and $\Upsilon
The shapes of the inclusive photon spectra in the processes \Jp \to \gamma
X and \Up \to \gamma X have been analysed using all available experimental
data.
Relativistic, higher order QCD and gluon mass corrections were taken into
account in the fitted functions. Only on including the gluon mass corrections,
were consistent and acceptable fits obtained. Values of
GeV and GeV were found for the
effective gluon masses (corresponding to Born level diagrams) for the \Jp and
\Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to
\gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine and . Values consistent with the current world
average were obtained only when gluon mass correction factors,
calculated using the fitted values of the effective gluon mass, were applied. A
gluon mass GeV, as suggested with these results, is consistent with
previous analytical theoretical calculations and independent phenomenological
estimates, as well as with a recent, more accurate, lattice calculation of the
gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table
Confining QCD Strings, Casimir Scaling, and a Euclidean Approach to High-Energy Scattering
We compute the chromo-field distributions of static color-dipoles in the
fundamental and adjoint representation of SU(Nc) in the loop-loop correlation
model and find Casimir scaling in agreement with recent lattice results. Our
model combines perturbative gluon exchange with the non-perturbative stochastic
vacuum model which leads to confinement of the color-charges in the dipole via
a string of color-fields. We compute the energy stored in the confining string
and use low-energy theorems to show consistency with the static quark-antiquark
potential. We generalize Meggiolaro's analytic continuation from parton-parton
to gauge-invariant dipole-dipole scattering and obtain a Euclidean approach to
high-energy scattering that allows us in principle to calculate S-matrix
elements directly in lattice simulations of QCD. We apply this approach and
compute the S-matrix element for high-energy dipole-dipole scattering with the
presented Euclidean loop-loop correlation model. The result confirms the
analytic continuation of the gluon field strength correlator used in all
earlier applications of the stochastic vacuum model to high-energy scattering.Comment: 65 pages, 13 figures, extended and revised version to be published in
Phys. Rev. D (results unchanged, 2 new figures, 1 new table, additional
discussions in Sec.2.3 and Sec.5, new appendix on the non-Abelian Stokes
theorem, old Appendix A -> Sec.3, several references added
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
Microbial exposure during early human development primes fetal immune cells
Human fetal immune system begins to develop early during gestation, however factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in-utero and their contribution towards activation of memory T cells
in fetal tissues. We profiled microbes across fetal organs using 16S-rRNA
gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta and lungs, in 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph-node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualised discrete localisation of bacteria-like structures and eubacterial-RNA within
14th week fetal gut lumen. These findings indicate selective presence of live-microbes in fetal organs during 2nd trimester of gestation and have broader implications towards establishment of immune competency and priming before birt
The survival probability of large rapidity gaps in a three channel model
The values and energy dependence for the survival probability of large rapidity gaps (LRG) are calculated in a three channel model. This
model includes single and double diffractive production, as well as elastic
rescattering. It is shown that decreases with increasing
energy, in line with recent results for LRG dijet production at the Tevatron.
This is in spite of the weak dependence on energy of the ratio .Comment: 26 pages in latex file,11 figures in eps file
The Physical Processes of CME/ICME Evolution
As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe
- …