6 research outputs found

    BPC 157 as a Therapy for Retinal Ischemia Induced by Retrobulbar Application of L-NAME in Rats

    Get PDF
    Providing NO-system importance, we suggest that one single application of the NOS-blocker L-NAME may induce retinal ischemia in rats, and that the stable pentadecapeptide BPC 157 may be the therapy, since it may interact with the NO-system and may counteract various adverse effects of L-NAME application. A rat retinal ischemia study was conducted throughout 4 weeks, including fundoscopy, behavior presentation, tonometry, and histology assessment. Retrobulbar L-NAME application (5 mg/kg; 0.5 mg/0.1 ml saline/each eye) in rats immediately produced moderate generalized irregularity in the diameter of blood vessels with moderate atrophy of the optic disc and faint presentation of the choroidal blood vessels, and these lesions rapidly progressed to the severe stage. The specific L-NAME–induced vascular failure points to normal intraocular pressure (except to very transitory increase upon drug retrobulbar administration). When BPC 157 (10 μg; 10 ng/kg, as retrobulbar application, 1 μg; 1 ng/0.1 ml saline/each eye) is given at either 20 min after L-NAME or, lately, at 48 h after L-NAME, the regular retrobulbar L-NAME injection findings disappear. Instead, fundoscopy demonstrated only discrete generalized vessel caliber irregularity with mild atrophy of the optic disc, and then, quite rapidly, normal eye background and choroidal blood vessels, which remain in all of the subsequent periods. Also, histology assessment at 1, 2, and 4 weeks shows that BPC 157 counteracted the damaged inner plexiform layer and inner nuclear layer, and revealed normal retinal thickness. The poor behavioral presentation was also rescued. Thus, while further studies will be done, BPC 157 counteracted L-NAME–induced rat retinal ischemia

    Comparison of Androgen Receptor, VEGF, HIF-1, Ki67 and MMP9 Expression between Non-Metastatic and Metastatic Stages in Stromal and Tumor Cells of Oral Squamous Cell Carcinoma

    No full text
    Objectives: Oral squamous cell carcinoma (OSCC) is the most common oral malignancy with low survival as it is very often diagnosed at an advanced stage, which is why the accurate profiling of the tumor is essential. The aim of this study was to, for the first time, compare in OSCC the frequency of AR, VEGF, MMP9, HiF1beta and Ki67 between the non-metastatic and metastatic disease. Materials and Methods: In the study, 96 non-metastatic and 91 metastatic OSCC patients were analysed for AR, VEGF, MMP9, HiF1beta and Ki67 levels by immunohistochemistry. Results: All of the tested biomarkers significantly differed between non-metastatic and metastatic disease. A significant association was found between >/=20% AR positive epithelium cells in cytoplasm, Ki67 and VEGF in cancer stroma. Ki67, HiF1beta, VEGF and MMP9 were significantly associated with TNM stages. Conclusion: Our results show for the first time an interplay between AR, VEGF, MMP9, HiF1beta and Ki67 in OSCC which may contribute to better diagnostics and therapy selection

    Mitochondrial ROS Induce Partial Dedifferentiation of Human Mesothelioma via Upregulation of NANOG

    No full text
    The expression of pluripotency factors is a key regulator of tumor differentiation status and cancer stem cells. The purpose of this study was to examine the expression of pluripotency factors and differentiation status of human mesothelioma and the role of mitochondria in their regulation. We tested the expression of OCT4/POU5F1, NANOG, SOX2, PI3K-AKT pathway and BCL2 genes and proteins in 65 samples of human mesothelioma and 19 samples of normal mesothelium. Mitochondrial membrane potential, reactive oxygen species (ROS) generation and expression of pluripotency factors were also tested in human mesothelioma cell line. Human mesothelium and mesothelioma expressed SOX2, NANOG, PI3K and AKT genes and proteins and POU5F1 gene, whereby NANOG, SOX2 and phosphorylated (activated) AKT were upregulated in mesothelioma. NANOG protein expression was elevated in less differentiated samples of human mesothelioma. The expression of genes of PI3K-AKT pathway correlated with pluripotency factor genes. Mesothelioma cells had functional, but depolarized mitochondria with large capacity to generate ROS. Mitochondrial ROS upregulated NANOG and mitoTEMPO abrogated it. In conclusion, human mesothelioma displays enhanced expression of NANOG, SOX2 and phosphorylated AKT proteins, while elevated NANOG expression correlates with poor differentiation of human mesothelioma. Mitochondria of mesothelioma cells have a large capacity to form ROS and thereby upregulate NANOG, leading to dedifferentiation of mesothelioma

    Morphometric analysis of renal arteries in patients with renal cell carcinoma

    Get PDF
    The aim of this study was to analyze morphometric parameters of renal arteries (longest diameter and tunica media thickness) in patients with renal cell carcinoma (RCC), to look into their relationship to tumor necrosis and to compare them with morphometric parameters recorded in a control group. We analyzed archival cases of RCC diagnosed in 2003 that also contained routinely sampled specimens of distal segments of renal artery. The control group consisted of specimens from both renal arteries obtained from 16 patients at routine autopsy during 2004–2005. Autopsy, as well as further histological analysis, did not disclose any malignant disease in the control group. Morphometric analysis of diameter and thickness of the renal artery tunica media was performed using Issa 3.1 software (Vamstek 2002, Zagreb, Croatia). The comparison of tunica media thickness showed that renal arteries from RCC cases were significantly thicker compared to distal parts of renal arteries in the control group (p=0.0002). Although renal artery samples from cases with necrotic tumor areas were thicker than those without tumor necrosis, the difference was not statistically significant. It is concluded that significantly thicker tunica media characterizes renal arteries in the group of patients with RCC when compared with the control group

    Stable Gastric Pentadecapeptide BPC 157 and Striated, Smooth, and Heart Muscle

    No full text
    First, we review the definitively severed myotendinous junction and recovery by the cytoprotective stable gastric pentadecapeptide BPC 157 therapy, its healing that might combine both transected and detached tendon and transected muscle, ligament and bone injuries, applied alone, as native peptide therapy, effective in rat injury, given intraperitoneally or in drinking water or topically, at the site of injury. As a follow up, we reviewed that with the BPC 157 therapy, its cytoprotective ability to organize simultaneous healing of different tissues of and full recovery of the myotendinous junction might represent the particular muscle therapy against distinctive etiopathology muscle disabilities and weakness. In this, BPC 157 therapy might recover many of muscle disabilities (i.e., succinylcholine, vascular occlusion, spinal cord compression, stroke, traumatic brain injury, severe electrolyte disturbances, neurotoxins, neuroleptics, alcohol, serotonin syndrome and NO-system blockade and tumor-cachexia). These might provide practical realization of the multimodal muscle-axis impact able to react depending on the condition and the given agent(s) and the symptoms distinctively related to the prime injurious cause symptoms in the wide healing concept, the concept of cytoprotection, in particular. Further, the BPC 157 therapy might be the recovery for the disabled heart functioning, and disabled smooth muscle functioning (various sphincters function recovery). Finally, BPC 157, native and stable in human gastric juice, might be a prototype of anti-ulcer cytoprotective peptide for the muscle therapy with high curing potential (very safe profile (lethal dose not achieved), with suited wide effective range (µg-ng regimens) and ways of application)
    corecore