207 research outputs found

    Effect of grafting on grapevine chlorosis and hydraulic conductivity

    Get PDF
    In a pot experiment the following grapevines were grown in a calcareous soil: Pinot blanc own-rooted and self-grafted, grafted on SO 4 and on 3309 C; SO 4 own-rooted, self-grafted and grafted on Pinot blanc; 3309 C own-rooted, self-grafted and grafted on Pinot blanc. The occurrence of chlorosis was strongly affected by graft combinations. In self-grafted 3309 C plants the specific conductivity was significantly reduced as compared to own-rooted ones. Own-rooted SO 4 plants showed the highest specific conductivity, associated with the highest rate of shoot growth and leaf chlorophyll content

    Downward shoot positioning affects water transport in field-grown grapevines

    Get PDF
    Grape canopies (cv. Nebbiolo) were manipulated to obtain vines with alternatively upward and downward shoots on the same fruit-cane. Downward orientation reduced length and total leaf area of the shoot and water flow through the shoot, but did not modify shoot water potential. Shoot hydraulic conductivity, either evaluated on growing plants or on cut shoot portions, was lower in downward than in upward oriented shoots at all positions along the cane. This supports the hypothesis that downward shoot orientation causes a reduction of the hydraulic conductivity, which in turn reduces the availability of water and nutrients for the leaves growing downstream of the point of conductivity reduction. A mechanism which reduces growth in downward oriented shoots is proposed and practical consequences for viticulture, related to reduced water conductivity in downward-trained shoots, are discussed

    Discoloured seeds of amaranth plant infected by Alternaria alternata: physiological, histopathological alterations and fungal secondary metabolites associated or registered

    Get PDF
    In the present study the aspects of discolouration that could influence both the production and consumption of amaranth were analyzed with the objectives to identify the presence of Alternaria alternata on seeds, to analyze possible changes in the anatomy of seed tissues and to detect the presence of fungal secondary metabolites. Component plating, histopathological and mycological analyses on discoloured seeds allowed i) location of propagules of A. alternata in all seminal components; ii) observation of hypertrophies in perisperm and embryo and iii) determination of several fungal secondary metabolites, mainly high concentrations of tenuazonic acid. To our knowledge, the information presented in this paper, related to physiological, histopathological changes and fungal secondary metabolites on discoloured seeds of (Amaranthus mantegazzianus syn. A. caudatus subsp. mantegazzianus (Pass) Hanelt affected by A. alternata, is the first worldwide record

    The mycorrhizal root-shoot axis elicits Coffea arabica growth under low phosphate conditions

    Get PDF
    Coffee is one of the most traded commodities world-wide. As with 70% of land plants, coffee is associated with arbuscular mycorrhizal (AM) fungi, but the molecular bases of this interaction are unknown. We studied the mycorrhizal phenotype of two commercially important Coffea arabica cultivars (‘Typica National’ and ‘Catimor Amarillo’), upon Funnelliformis mosseae colonisation grown under phosphorus limitation, using an integrated functional approach based on multi-omics, physiology and biochemistry. The two cultivars revealed a strong biomass increase upon mycorrhization, even at low level of fungal colonisation, improving photosynthetic efficiency and plant nutrition. The more important iconic markers of AM symbiosis were activated: We detected two gene copies of AM-inducible phosphate (Pt4), ammonium (AM2) and nitrate (NPF4.5) transporters, which were identified as belonging to the C. arabica parental species (C. canephora and C. eugenioides) with both copies being upregulated. Transcriptomics data were confirmed by ions and metabolomics analyses, which highlighted an increased amount of glucose, fructose and flavonoid glycosides. In conclusion, both coffee cultivars revealed a high responsiveness to the AM fungus along their root-shoot axis, showing a clear-cut re-organisation of the major metabolic pathways, which involve nutrient acquisition, carbon fixation, and primary and secondary metabolism

    SiO2nanoparticles modulate the electrical activity of neuroendocrine cells without exerting genomic effects

    Get PDF
    Engineered silica nanoparticles (NPs) have attracted increasing interest in several applications, and particularly in the field of nanomedicine, thanks to the high biocompatibility of this material. For their optimal and controlled use, the understanding of the mechanisms elicited by their interaction with the biological target is a prerequisite, especially when dealing with cells particularly vulnerable to environmental stimuli like neurons. Here we have combined different electrophysiological approaches (both at the single cell and at the population level) with a genomic screening in order to analyze, in GT1-7 neuroendocrine cells, the impact of SiO2NPs (50\u2009\ub1\u20093\u2009nm in diameter) on electrical activity and gene expression, providing a detailed analysis of the impact of a nanoparticle on neuronal excitability. We find that 20\u2009\ub5g\u2009mL-1NPs induce depolarization of the membrane potential, with a modulation of the firing of action potentials. Recordings of electrical activity with multielectrode arrays provide further evidence that the NPs evoke a temporary increase in firing frequency, without affecting the functional behavior on a time scale of hours. Finally, NPs incubation up to 24\u2009hours does not induce any change in gene expression

    Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines

    Get PDF
    A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water us
    • …
    corecore