625 research outputs found
Study of an attitude control system for the astronaut maneuvering unit final report, dec. 1963 - jul. 1964
Attitude control system for astronaut maneuvering unit
Electrical response of β-PVDF in a constant uniaxial strain rate deformation
The microstructure of β-PVDF has great influence on its piezo- and pyroelectric responses. The microstructure of β-PVDF drastically changes upon a mechanical deformation perpendicular to the preferred chain orientation, mainly above the yielding point. The voltage (open-circuit response) developed in β-PVDF films was monitored while the material is subjected to a constant strain rate programFundação para a Ciência e Tecnologia (FCT) -
POCTI/CTM/33501/99
Diets high in selenium and isoflavones decrease androgen-regulated gene expression in healthy rat dorsolateral prostate
<p>Abstract</p> <p>Background</p> <p>High dietary intake of selenium or soybean isoflavones reduces prostate cancer risk. These components each affect androgen-regulated gene expression. The objective of this work was to determine the combined effects of selenium and isoflavones on androgen-regulated gene expression in rat prostate.</p> <p>Methods</p> <p>Male Noble rats were exposed from conception until 200 days of age to diets containing an adequate (0.33-0.45 mg/kg diet) or high (3.33-3.45 mg/kg) concentration of selenium as Se-methylselenocysteine and a low (10 mg/kg) or high (600 mg/kg) level of isoflavones in a 2 × 2 factorial design. Gene expression in the dorsolateral prostate was determined for the androgen receptor, for androgen-regulated genes, and for Akr1c9, whose product catalyzes the reduction of dihydrotestosterone to 5alpha-androstane-3alpha, 17beta-diol. Activity of hepatic glutathione peroxidise 1 and of prostatic 5alpha reductase were also assayed.</p> <p>Results</p> <p>There were no differences due to diet in activity of liver glutathione peroxidase activity. Total activity of 5alpha reductase in prostate was significantly lower (<it>p </it>= 0.007) in rats fed high selenium/high isoflavones than in rats consuming adequate selenium/low isoflavones. High selenium intake reduced expression of the androgen receptor, Dhcr24 (24-dehydrocholesterol reductase), and Abcc4 (ATP-binding cassette sub-family C member 4). High isoflavone intake decreased expression of Facl3 (fatty acid CoA ligase 3), Gucy1a3 (guanylate cyclase alpha 3), and Akr1c9. For Abcc4 the combination of high selenium/high isoflavones had a greater inhibitory effect than either treatment alone. The effects of selenium on gene expression were always in the direction of chemoprevention</p> <p>Conclusion</p> <p>These results suggest that combined intake of high selenium and high isoflavones may achieve a greater chemopreventive effect than either compound supplemented individually.</p
In vitro human growth hormone increases human chorionic gonadotropin and progesterone secretion by human placenta at term: evidence of a modulatory role by opioids
We examined the in vitro effect of human growth hormone (hGH) on hormone placental production and the modulation by opioids of this function. Small placental fragments from 12 term placentas were incubated at 37 degrees C in a 95% air and 5% CO2 atmosphere for 4 h with various concentrations of hGH (1-1000 ng/ml) or naloxone (3-500 ng/ml). Both hGH and naloxone increased the concentrations of human chorionic gonadotropin (hCG) and progesterone in the media. The effect of the hGH was dose-dependent and statistically significant at 10 ng/ml, while naloxone was able to increase hCG and progesterone production only at the highest doses (250-500 ng/ml). The concomitant treatment with ineffective doses of naloxone and hGH was able to enhance hCG and progesterone secretion reaching levels similar to those obtained with the highest doses of hGH alone. High naloxone concentrations significantly decreased both hCG and progesterone secretion induced by high doses of hGH. This study confirms the relevance of growth hormone in sustaining placental endocrine activities and indicates an effect of opioids in modulating these function
Nucleation of the electroactive γ phase and enhancement of the optical transparency in low filler content poly(vinylidene)/clay nanocomposites
Poly(vinylidene fluoride), PVDF, based nanocomposites with different clays structures have been processed by solvent casting and melt crystallisation. Depending on the melting temperature of the polymer, the nanocomposite recrystalises in the electroactive or non electroactive β-phase of the polymer. This fact is related to the thermal behaviour of the clay. For montmorillonite clay, the full crystallisation of the electroactiveγ-phase occurs for clay contents lower than 0.5 wt%, allowing the nanocomposites to maintain the mechanical properties of the polymer matrix. The electroactivity of the material has been proven by measuring the piezoelectric d33 response of the material. The obtained value of d33 is -7 pC/N, lower than in β-PVDF obtained by mechanical stretching, but still among the largest coefficients obtained for polymers. Further, the optical transmittance in the visible range is strongly enhanced with respect to the transmittance of the pure polymer. Finally, it is demonstrated that the nucleation of the β-phase can be also obtained in other clays, such as in kaolinite and laponite.Fundação para a Ciência e a Tecnologia (FCT) - NANO/NMed-SD/0156/2007, PTDC/CTM/69316/2006, PTDC/CTM-NAN/112574/2009, SFRH/BD/62507/2009.FEDER funds through the "Programa Operacional Factores de Competitividade – COMPETECOST Action MP1003, the ‘European Scientific Network for Artificial Muscles’ (ESNAM)
Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors
Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. © 2013 den Hartog et al
Activation of mGlu3 Receptors Stimulates the Production of GDNF in Striatal Neurons
Metabotropic glutamate (mGlu) receptors have been considered potential targets
for the therapy of experimental parkinsonism. One hypothetical advantage
associated with the use of mGlu receptor ligands is the lack of the adverse
effects typically induced by ionotropic glutamate receptor antagonists, such as
sedation, ataxia, and severe learning impairment. Low doses of the mGlu2/3
metabotropic glutamate receptor agonist, LY379268 (0.25–3 mg/kg, i.p.)
increased glial cell line-derived neurotrophic factor (GDNF) mRNA and protein
levels in the mouse brain, as assessed by in situ
hybridization, real-time PCR, immunoblotting, and immunohistochemistry. This
increase was prominent in the striatum, but was also observed in the cerebral
cortex. GDNF mRNA levels peaked at 3 h and declined afterwards, whereas GDNF
protein levels progressively increased from 24 to 72 h following LY379268
injection. The action of LY379268 was abrogated by the mGlu2/3 receptor
antagonist, LY341495 (1 mg/kg, i.p.), and was lost in mGlu3 receptor knockout
mice, but not in mGlu2 receptor knockout mice. In pure cultures of striatal
neurons, the increase in GDNF induced by LY379268 required the activation of the
mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways, as
shown by the use of specific inhibitors of the two pathways. Both in
vivo and in vitro studies led to the conclusion
that neurons were the only source of GDNF in response to mGlu3 receptor
activation. Remarkably, acute or repeated injections of LY379268 at doses that
enhanced striatal GDNF levels (0.25 or 3 mg/kg, i.p.) were highly protective
against nigro-striatal damage induced by
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice, as assessed by
stereological counting of tyrosine hydroxylase-positive neurons in the pars
compacta of the substantia nigra. We speculate that selective mGlu3 receptor
agonists or enhancers are potential candidates as neuroprotective agents in
Parkinson's disease, and their use might circumvent the limitations
associated with the administration of exogenous GDNF
- …