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Abstract 

Poly(vinylidene fluoride), PVDF, based nanocomposites with different clays structures have 

been processed by solvent casting and melt crystallisation. Depending on the melting 

temperature of the polymer, the nanocomposite recrystalises in the electroactive  γ or non 

electroactive α-phase of the polymer. This fact is related to the thermal behaviour of the clay. 

For montmorillonite clay, the full crystallisation of the electroactive γ-phase occurs for clay 

contents lower than 0.5 wt%, allowing the nanocomposites to maintain the mechanical 

properties of the polymer matrix. The electroactivity of the material has been proven by 

measuring the piezoelectric d33 response of the material. The obtained value of d33 is  -7 

pC/N, lower than in β-PVDF obtained by mechanical stretching, but still among the largest 

coefficients obtained for polymers. Further, the optical transmittance in the visible range is 

strongly enhanced with respect to the transmittance of the pure polymer. Finally, it is 

demonstrated that the nucleation of the γ-phase can be also obtained in other clays, such as in 

kaolinite and laponite.  
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Introduction 

The mixing of polymers and clays has been widely investigated in recent years mainly 

due the mechanical reinforcement effect of the latter. The main goal has been to replace 

traditional fibre reinforced composites due to improved strength and stiffness stability, 

thermal and barrier properties and flame retardant behaviour of the clay 

nanocomposites.1,2,3 One interesting polymer for nanocomposites production is 

poly(vinylidene fluoride), PVDF, due to its remarkable electroative properties and 

therefore its suitability for sensor and actuator applications. Furthermore, PVDF films 

present high flexibility, high mechanical resistance, dimensional stability, lightness, 

moldability, low cost production and low mechanical and acoustic impedance.4 

Depending on the processing conditions PVDF, with a chemical formula (CH2-CF2)n, 

can crystallise in at least four different phases: α, β, γ and δ.5,6 The α-phase, that has an 

alternating s-trans and s-gauche C-C bonds, is the most stable when the material is 

cooled from the melt and therefore the most commonly obtained.5 The β-phase, with all 

C-C bonds in the s-trans conformation (TTTT), is the one that presents the best 

electroactive piezoelectric and pyroelectric properties and is commonly obtained by 

mechanical stretching of the α-phase7 or by the addition of selected nanoparticles.8,9  

The γ-phase is, as the β-phase, electrically active. However, due the presence of a g-

gauche bond every fourth repeat units of C-C band (T3GT3G�), this effect if weaker when 

compared with β-phase. γ-phase can be obtained by crystallization from the melt or 

solution casting at temperatures near the melt temperature of the α-phase. The α→γ solid 

state phase transformation also can occur by annealing at temperatures close to melt 

temperature.10  



In the last years, the literature reports some studies where organically modified clays 

show the ability to induce, by melt intercalation or solution casting, the crystallization 

of the electroactive β-phase of PVDF11-14 and, in a few studies, the induction of a 

crystalline γ-phase.14,15 

The distribution, intercalation and exfoliation of organically modified silicates prepared 

from Cloisite and Montmorillonite clays has been investigated and it is concluded that 

the trend of PVDF to crystallize in the β-phase is higher in organically modified clays 

when compared with unmodified clays.11 In all cases, the full β-phase crystallization is 

obtained by inclusion of an amount of clay higher than 1.5 wt%.16. The full β-phase 

crystallization of PVDF has also been achieved for lower clay contents, of the order of 

0.025 %, by an improved method; however, this method implies a very high 

consumption of material.13 In general, the toughness of nanocomposites, the melting 

and crystallization temperature and also the crystallization rate increases with the 

introduction of nanoparticles and, conversely, the crystallinity of the nanocomposites 

decreases.16-18 

On the other hand, a few number of more recent studies indicate that the γ-phase of 

PVDF is nucleated in the presence of the organoclays. It was demonstrated that when 

the composite samples are subjected to a slow cooling  from the melt, the presence of 

the organoclays induce the crystallization of a mixture of γ-phase and α-phase, the γ-

phase being predominant for organoclay concentrations above 1.5 wt%15. On the other 

hand, when the sample is subjected to a melt-quenched-annealing process, the 

nanocomposites crystallize in a mixture of β- and γ-crystals15. Finally, a recent study 

concluded that though the melt-crystallization at hight supercooling  the γ-phase is also 

obtained for an organoclay content up to 0.1%, in contrast to cold-crystallized samples, 

where organoclays addition results in β-phase PVDF14. 



Some of the results presented in the above mentioned articles are contradictory, which 

result from the confusion generated on the identification of the γ- and β-phase. Due to 

the s-trans conformation (TTTT) of the β-phase of PVDF and the (T3GT3G�) 

conformation of the γ-phase of the polymer, their characteristic FTIR bands and X-ray 

diffraction bands typically used for the identification of the phases either coincide or are 

very close to each other, making difficult to distinguish it. Based on literature results, 

the analysis of Table 1 allows to precisely identifying the FTIR absorption bands of the 

crystalline phases of PVDF. 

 

Table 1. FTIR absorption bands characteristics of the α-, β- and γ-phases of PVDF19-22 

α-phase 

(cm-1) 

β-phase 

(cm-1) 

γ-phase 

(cm-1) 

408 445 431 

532 467 440 

614 510 512 

764 840 776 

796 884 812 

855 1175 833, 838 

976 

1149 

1275 883 

1210  1234 

1383  1117 
 

From Table 1 it is important to notice that most of the bands typically used for the 

identification of the electroactive β- and γ-phases of the polymer, in particular those at 

510, 512, 833, 838, 840, 883 and 884 cm-1 (shadow in Table 1) are actually 

superposition of  β- and γ-phase absorption bands, when both phases exist. On the other 

hand, just the peaks at 445 and 467 cm-1 are characteristic absorption bands of the β-



phase without superposition with other absorptions and just the absorption bands at 431, 

812 and 1234 cm-1 are characteristic of the γ-phase without superposition with 

absorptions from other phases19-22.  

 

Further, in the previous articles reporting on the nucleation of the electroactive phase of 

the polymer by clays, the piezoelectric response and optical properties of the material 

has never been discussed, which are the key issues for the use of the material in sensor 

and actuator applications. 

In the present work, the main problems that exist in the processing of electroactive 

PVDF through the nucleation with clays are addressed. It is shown that it is possible to 

prepare PVDF/clay nanocomposite in the γ-phase with low clay contents, without any 

organic treatment and with a low consumption of material. Moreover, the material 

presents increased transmittance in the visible range, making it appropriate for optical 

applications. It is also shown that the material can be poled and the d33 piezoelectric 

coefficient has been measured as a function of the clay and the γ-phase contents. 

Finally, it is shown that different clays can be used in order to achieve the electroactive 

polymer phase. 

 

Experimental 

 

PVDF/clay nanocomposites with an average thickness of 50 µm were prepared by 

spreading a solution of 1.0 g of PVDF powder (Solef 1010) with a suspension of 

montmorillonite K10 (Aldrich) in 4 mL of N,N-dimethyl formamide (DMF) in a glass 

slide. Previously, the suspension of montmorillonite and DMF was homogenized by 

placing it in an ultrasound bath for 4h before the polymer was added and dissolved with 



a magnetic stirrer. After this process the nanocomposite is typically melted at 210ºC and 

recrystallised to room temperature.23 Since the clay can suffer structural modifications 

at this temperatures24-25, six films with a clay concentration of  0.50 wt% were prepared 

at temperatures between 170 ºC and 220 ºC in order to study the effect of the polymer 

melting temperature during nanocomposite preparation. The effect of clay concentration 

on the electroactive phase content was further studied in films with 0.10, 0.25 and 0.50 

wt% of montmorillonite. Finally, the effect of different clay structures was studied by 

incorporating an amount of 0.50 % of kaolinite (from North of Portugal) and laponite 

(Laport Industries Ltd) into the polymer matrix by the same procedure explained above. 

Scanning Electron Microscopy (SEM) was performed using a FEI Nova 200 NanoSEM 

with an acceleration voltage of 15 kV in order to evaluate the morphology and 

microestructure of the clay and the nanocomposite. 

 

The crystalline phase of PVDF on the nanocomposites was determined by Fourier 

Transformed Infrared Spectroscopy (FTIR) in the ATR mode (Spectrum 100, 

Attenuated Total Reflectance mode) in the range between 650 and 4000 cm−1, on 32 

scans. 

X-ray diffraction (XRD) measurements were carried out in a X’Pert Pro-MPD advanced 

diffractometer equipped with Cu Kα radiation operated at 50 kV and 40 mA in order to 

study the polymer phase and clay behaviour. 

 

Differential scanning calorimetry (DSC) was performed in a Mettler Toledo DSC 823 

apparatus under a nitrogen atmosphere at a heating rate of 10±0.2ºC.min-1 in order to 

evaluate the crystalline fraction of the polymer and the influence of the clay on the 

melting behaviour. 



In order evaluate the piezoelectric response of the samples, films were first subjected to  

a Corona discharge under previously optimized conditions of 70 ºC of temperature 

inside a home-made chamber under an electric field of 30 kV and a constant current of 

15 µA during 75 minutes. Still under the application of the field, the films were cooled 

down to 30ºC. The piezoelectric d33 response was measured with a Wide Range d33-

meter (Model 8000, APC Int Ltd). 

The complex dielectric constant as a function of frequency was measured between 100 

Hz and 1 MHz with an automatic Quadtech 1929 Precision LCR meter, after thermal 

deposition of gold electrodes on the sample.  

Measurements of optical transmittance were performed with an optical 

spectrophotometer Shimatzu UV-3101PC in the range of 400 to 700 nm. 

Dynamic mechanical analysis was performed with a DMA 8000 Perkin-Elmer set-up in 

the nanocomposites with different clay types and a clay concentration of 0.5 %. The 

measurements were performed at room temperature with a frequency scan from 0.01 to 

10 Hz. 

 

Results and Discussion 

 

a) Effect of the melting temperature  

 

PVDF films are usually prepared by solution cast and melting at a range of temperatures 

higher than 200ºC17, which corresponds to the temperature of clays interlayer water 

elimination and therefore a temperature range in which structural modifications can 

occur.24-25 Due this fact,  it becomes important to study the influence of the melting 



temperature in the final properties of the nanocomposites, as the clay/polymer 

interfacial interaction will be modified during the crystallisation of the polymer matrix. 

In order to study this effect, nanocomposites of PVDF with 0.5 %wt of montmorillonite 

were melted at different temperatures and cooled to room temperature. Fig.1 shows 

FTIR-ATR patterns of the samples prepared after melting at different temperatures.  
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Figure 1. FTIR-ATR spectra of PVDF/clay nanocomposite melted at different 

temperatures 

 

It can be concluded from Figure 1 that the melting temperature affects the crystalline 

polymer phase present in the nanocomposite, as identified by specific clear differences 

in the FTIR spectra. For the calculation of the relative amount of each polymorph 

present in the polymer, some bands between 700 and 1500 cm-1 of the FTIR spectra 

have been identified to correspond to the α-, β and γ-phases of the polymer (Table 1)26 

and can be used for this purpose. 



As previously mentioned, the proximity or even the superposition of FTIR absorption 

bands of the β- and γ-phase of PVDF led to a large number of contradictions in the 

phase identification of nanocomposites. However, the analysis of the FTIR spectra in 

parallel with Table 1 and with the support of recent studies 14,15 allows to conclude that 

nanocomposites of PVDF with clays melted at a temperature not exceeding 200ºC fully 

crystallize in the γ-phase. In particular, Figure 1 shows a strong decrease of the 764, 

976, 1149 and 1383 cm-1 bands, characteristics from the α-phase with respect to the 

nanocomposites prepared after melting at higher temperatures. On the other hand, the 

peaks at 812, 833, 838 and 1234 cm-1, characteristics of the γ-phase, suffer a strong 

increase. No representative amount of β-PVDF is identified in the samples as no 

characteristic peaks identified just with this phase suffer any modification with the 

processing temperature (Table 1), as it is proved to occur when this phase is nucleated 

in other clay nanocomposites14, 15. 

The relative amount γ-phase (F(γ)) present in the samples and shown in Table 2 was 

calculated applying a previously developed method (equation 1) for the quantification 

of the polymer phase content7,27,28 ,  assuming that the crystalline phase content of the 

polymer is either in the α or γ-phase20, with no or small traces of β-phase: 

                                                     

(1) 

 

Here, Aα and Aγ represent the absorbencies at 766 and 833 cm−1, which correspond to 

the α- and the γ-phase material; Kα and Kγ  are the absorption coefficients at the 

respective wave numbers and Xα and Xγ the degree of crystallinity of each phase. The 

value of Kα is 0.365 and the value of Kγ is 0.150 µm-1.20 
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When the melting of the nanocomposite occurs at temperatures above 210ºC, the 

polymer recrystallizes in the α-phase and this tendency increases for higher 

temperatures. On the other hand, when the material is melted at temperatures below 

200ºC, it tends to crystallize in the γ-phase (Table 2). It should be stressed that this fact 

does not occur in the absence of the clays, when the polymer always crystallises in the 

α-phase independently of the previous melting temperature of the material.  

 

Table 2. γ-phase content, calculated by equation 1, for PVDF/montmorillonite 

nanocomposites obtained by recristallization after melting at different temperatures. 

Temperature (ºC) Percentage of γ-phase (%) 

170 97 

180 98 

190 96 

200 95 

210 0 

220 0 

 

The nucleation of the electroactive γ-phase is due to an interaction between the 

negatively charged delaminated clays and the dipolar moments of the PVDF. This ion-

dipole interaction tends to order the PVDF monomers in a preferentially  trans 

conformation inducing therefore the crystallization of the γ- or β-phases.15 The 

stabilization of either γ or β-phase is not understood and depends on factors such as 

cooling rate and surface modification of the clays14, 15. 

On the other hand, by increasing meting temperature, the reduction of the interlayer 

spacing of the clays at temperatures above 200 ºC due the elimination of interlayer 



water25 prevents the exfoliation of montmorillonite which in turn reduces the contact 

area between the negatively charged delaminated clays and the dipolar moments of 

PVDF, preventing its crystallization of the electroactive phases. The interlayer water 

elimination and the collapse of the interlayer distance is confirmed by the disappearance 

of the d(001) diffraction peak29, attributed to the interlayer distance, at 2θ ~ 9º, in the 

XRD patterns for samples prepared at temperatures above the 200ºC (Fig. 2 a) and b), 

inset).  
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Figure 2. XRD patterns for PVDF/clay nanocomposite melted at 200 ºC (a) and 210 ºC 

(b), respectively. 

The XRD patterns also confirm that  when the sample is melted at 210ºC it crystallizes 

in the α-phase of PVDF, with characteristic peaks at 17.7, 18.4 and 19.9º and that when 

the sample is melted at 200ºC, the XRD patterns show the peaks at  18.5, 19.2, 20.1, 

20.3 and 26.8, characteristic of the γ-phase (Figure 2). 

With respect to the morphology of the composites, SEM images (Fig. 3) show a 

uniform distribution of the clay within the polymer matrix and a non-porous, compact 

microstructure of the polymer matrix, independently of the melting temperature. 
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Figure 3. Scanning electron microscopy (SEM) micrographs of the nanocomposites 

with 0.5% of montmorillonite melted at 170ºC (a), (b) and 220ºC (c), (d). 

On the other hand, as observed in Fig. 3, the montmorillonite microstructure changes 

for the different nanocomposite prepared after melting at different temperatures. For the 

samples prepared at lower temperatures (Fig. 3, a and b), platelets of some nanometric 

layers are well separated one another and dispersed in different directions along the 

continuous polymer matrix. In this situation, there is a larger interaction area between 

these clay platelets of montmorillonite and the polymer (Fig. 3(b)), the polymer 

microstructure growing from the clay layers. On the other hand, when the polymer is 

melted at temperatures above 200ºC, the clays create larger micrometer size clusters due 

to the interlayer structural variations. This fact reduces the interaction area between the 

clays and the polymer matrix and do not promote the crystallization of the electroactive 

phase. 

(c) (d) 

(a) (b) 1 µm 

5 µm 1 µm 

5 µm 



The composites in the α- and γ-phases show also different optical transmittance to the 

visible light. Measurements of optical transmittance are presented in Fig. 4, 

demonstrating that for melting temperatures equal or less than 200 ºC the transmittance 

in the visible region of the nanocomposite is much higher than for the melting 

temperatures above it. This fact is attributed to the variations of the clay microstructure 

and its dispersion in the polymer matrix, as well as its influence, as it will be shown 

later, on the degree of crystallinity of the polymer. As observed in Figure 3, for 

processing temperatures below 200 ºC the dispersion of the clays is better achieved, as 

well as the wetting by the polymer. Further, the clay is dispersed in the form of small 

platelets of some clay nanometric layers. These factors imply a better optical 

transmittance than the larger clay grains not so well dispersed and with worst interaction 

with the polymer matrix obtained for the samples melted at higher temperatures, that 

create defective microstructure e.g. voids and cracks (Fig. 3 c, d). 
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Figure 4. Optical transmittance in the visible range of PVDF/ montmorillonite 

nanocomposites after processing at different melting temperatures 



 

Fig. 4 also shows that the transmittance of the films is higher as the melting temperature 

approaches 200ºC. Thus, it seems to be an ideal melting temperature for obtaining 

highly transparent piezoelectric nanocomposites.  

 

b) Functionally graded electroactive composites  

 

The relationship between the processing temperature and the polymer phase after 

recrystalisation allows the production of samples with different electroactive phase 

content and transmittance along the films, with potential application as functionally 

graded materials in electrical, optical and electrooptical areas.30,31 This effect can be 

achieved by exposing different parts of the film to different temperatures. In this way, a 

film of 14 cm was exposed to a temperature gradient from ~210 to 180 ºC along its 

length and the optical transmittance and phase content were determined at different 

points 2 cm apart along the film (the points were numbered 1 to 6, from the higher to 

the lower temperature side). The results are presented in Fig. 5. 
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Figure 5. FTIR-ATR spectra of functionally graded film of PVDF/montmorillonite (a) 

and the corresponding optical transmittance spectra in the visible region (b) 

 

Fig. 5 (a) shows the gradual decrease of the peak at 764, 976, 1149 and 1383 cm-1 

indicative of the presence of the α-phase and the increase of the peaks at 812, 833, 838 

and 1234 cm-1 related to the γ-phase. The quantification of the electroactive phase 

content in each of the sites of the sample by Equation (1) is presented in Table 3. 

 

Table 3. γ-phase content, calculated by equation 1, for the PVDF/montmorillonite 

nanocomposite film melted in a temperature  gradient. 

Position Percentage of γ-phase (%) 

1 0 

2 0 

3 37 

4 81 

5 95 

6 97 

 

It is demonstrated in this way that the electroactive γ-phase content ranges from 0 to 

97% and that it is also accompanied by a gradual increase on the transmittance of the 

film (Fig 5 (b)). 

 



c) Effect of the clay content 

The effect of relative amount of clay in the electroactive phase content of the 

nanocomposite was evaluated by preparing samples with 0.10, 0.25 and 0.50 %wt of 

montmorillonite within the polymer matrix and by melting the nanocomposites at 

200ºC. FTIR results reveal that the γ-phase content is also dependent on the clay content 

(Fig. 6). 
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Figure 6. FTIR-ATR spectra of PVDF and PVDF with different percentage of 

montmorillonite prepared after melting at 200 ºC.  

 

The γ-phase content, presented in table 4, was calculated using Equation 1 and the 764 

and 833 cm-1 absorption bands. 

 

 

 



Table 4. γ-phase content, degree of crystallinity and d33 for nanocomposites with 

different amounts of montmorillonite 

Montmorillonite 

(wt %) 
γ-phase (%) 

Crystallinity 

(%) 
d33 (pC/N) 

ε’ 

(f = 1kHz) 

tg δ 

(f = 1kHz) 

0.00 0 47 0 7.3 0.0389 

0.10 0 40 0 8.5 0.0200 

0.25 84 49 -7 10.2 0.0274 

0.50 91 50 -6 9.7 0.0391 

  

The introduction of  0.10 wt% of montmorillonite does not affect the crystalline phase 

of the polymer, crystallizing mainly in the nonelectroactive α-phase. However, when 

0.25 wt% of montmorillonite is introduced there is a decrease of the 764, 976, 1149 and 

1383 cm-1 peaks, characteristics of the α-phase and a corresponding appearance of the 

812, 833-838 and 1234 cm-1 peaks, assigned to the γ-phase.7 The increase of 

montmorillonite concentration induces even further the nucleation of the γ-phase. For a 

percentage of 0.50 wt%, the α-phase completely disappears and the γ-phase is further 

enhanced, at a maximum value of ~ 90%. Table 4 also shows the degree of crystallinity 

of the polymer composites as measured by DSC (Fig. 7) and calculated by Equation (2): 

 

∆𝑋𝑐 = ∆𝐻𝑓
∆𝐻100

   (2) 

 

where ∆𝐻𝑓 represents the melting enthalpy of the composite and ∆𝐻100 (taken as 104,6 

J/g) 20 is the melting enthalpy for a 100% crystalline sample of pure PVDF. 



It is observed that the degree of crystallinity is affected by the amount of clay present in 

the composite. The composite shows a decrease of the degree of crystallinity when the 

clay, for small clay concentrations, acts as a defect in the polymer structure, with no 

capability of nucleation of the electroactive phase. Further, by increasing clay content 

the clay seeds act as nucleating agents of the γ-phase and the degree of crystallinity 

increases. 
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Figure 7. DSC thermograms for α-PVDF and PVDF with different percentage of 

montmorillonite. 

The aforementioned behaviour is supported by the shape of the DSC scans (Fig. 7) 

obtained for the first heating runs obtained for nanocomposites with different amount of 

montmorillonite. The samples with 0.10 %wt of clay maintain the melting peak at the 

same temperature as the α-phase of PVDF, with a shoulder  associated to the presence 

of defects in the films due to the introduction of clays. As the amount of clay is 

increased, the melting peak is shifted to higher temperatures. When the clay reaches a 



0.50%wt concentration, the peak is at 178ºC what corresponds to the melting of the γ -

phase crystals.10 

 

Finally, the crystallization of the samples in the γ-phase is further demonstrated by their 

piezoelectric d33 response (Table 3). It is noteworthy to mention that the piezoelectric 

coefficients, despite being lower than for the β-phase of the polymer, they are still 

among the largest obtained for polymers, are in the range suitable for application and 

are obtained avoiding the stretching process necessary to prepare β-PVDF, which 

hinders many applications involving microfabrications techniques.32 The lower 

piezoelectric response of γ-PVDF with respect to β-PVDF mainly relies in the different 

chain conformations, with more dipolar moments for unit cell contributing to the 

electroactive response in the all-trans chain conformation of β-PVDF.  Finally, there is 

also a contribution of the microstructure to the reduction of the electroactive response: 

in the present case, films crystallize in a spherulitic microstructure with random 

orientation of the polymer chains, conversely to the stretched films that show 

preferential chain and crystallite orientation.33 Finally, the values for the real and 

imaginary parts of the dielectric constant are similar to the ones obtained for β-PVDF5 

(Table 3). 

 

 

d) Effect of the different clays 

In order to further evaluate the origin of the crystallization of the γ-phase of PVDF by 

clays, nanocomposites of clays with different structures were prepared for a given clay 

content: montmorillonite, laponite and kaolinite. Montmorillonite is an expanding clay 

with a structure type of 2:1. When exfoliated, it creates plates with a thickness of 1 nm 



and a diameter ranging from 50 to 500 nm. Laponite has the same 2:1 clay structure 

type of montmorillonite, but it shows mesoporosity resulting from interparticle 

aggregates and can create platelets of 1nm of thickness but with a smaller diameter than 

monmorillonite (~30 nm).34 Kaolinite present a 1:1 clay structure type, it has a basal 

spacing fixed at 0.72 nm and, unlike the aforementioned clays, is unable to absorb water 

into the interlayer position. All the samples were prepared by solvent cast at a 

concentration of 0.5 %wt and melted at 200ºC. The results obtained by FTIR are 

presented in Fig. 8.  
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Figure 8. a) FTIR-ATR spectra of nanocomposites of PVDF with 0.5%wt of 

montmorillonite, laponite and kaolinite clays and b) the corresponding optical 

transmittance spectra in the visible region. 

 

Fig. 8 (a) shows that the γ-phase content is more pronounced in montmorillonite 

samples, followed by laponite and finally by kaolinite. The piezoelectric γ-phase 

content, as calculated by equation 1, for the different clays are 96 % for montmorillonite 

samples, 80 %  for laponite samples and finally 73 % for kaolinite composites. The 

evolution of the phase content for the different clays can be explained by the expanding 

effect observed in the two first clays that is not observed in kaolinite. The interparticle 

(a) (b) 



aggregates observed on laponite also difficult, on the other hand, its exfoliation and is 

responsible for the lower γ-phase content when compared with the montmorillonite. As 

on the case of montmorillonite, the melting of these nanocomposite samples at 

temperatures above 200ºC, prevents the crystallization of the γ -phase. Fig. 8 (b) shows 

the transmittance of the different samples, which also increases for these clays with 

respect to pure PVDF. The highest transmittance is obtained for the nanocomposite with 

laponite, followed by montmorillonite and kaolinite. These results can be related to the 

different degree of crystallinity of the polymer within the nanocomposites, i.e., the 

higher the degree of crystallinity of the nanocomposites, the higher is the transmittance. 

This fact is confirmed by the degree of crystallinity obtained by DSC: laponite, the clay 

giving origin to the most transparent nanocomposite, is also the one with the highest 

degree of crystallinity (59%), followed by montmorillonite (51%) and kaolinite (46%). 

The different interaction between the clays and the polymer matrix, leading to the 

different electroactive phase content and transparency is also supported by the 

dynamical mechanical measurements  performed for the three types of nanocomposites 

with 0.5% of clay. The results are represented in Figure 9. The higher elastic modulus is 

observed for nanocomposites when prepared with montmorillonite and laponite, but a 

lower elastic modulus than PVDF is observed when the kaolinite is present. This fact 

can be explained by the larger expanding effect observed on montmorillonite and 

laponite, that allows larger interaction areas between the polymer and the layers of the 

clays and prevents the nanocomposite deformation. On the other hand, the kaolinite is 

not an expanding clay so, the contact area between this clay and the polymer is smaller, 

representing therefore a defect that acts as a rupture zone and facilitates the 

deformation.   
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Figure 9. E’ variation with frequency for α-PVDF and PVDF/clay nanocomposite with 

0.50 % of montmorillonite, laponite and kaolinite.  
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