35 research outputs found

    DEAD-Box Helicase 4 (Ddx4)+ Stem Cells Sustain Tumor Progression in Non-Serous Ovarian Cancers

    Get PDF
    DEAD-Box Helicase 4 (Ddx4)+ ovarian stem cells are able to differentiate into several cell types under appropriate stimuli. Ddx4 expression has been correlated with poor prognosis of serous ovarian cancer (OC), while the potential role of Ddx4+ cells in non-serous epithelial OC (NS-EOC) is almost unexplored. The aim of this study was to demonstrate the presence of Ddx4+ cells in NS-EOC and investigate the effect of follicle-stimulating hormone (FSH) on this population. Increased Ddx4 expression was demonstrated in samples from patients with advanced NS-EOC, compared to those with early-stage disease. Under FSH stimulation, OC-derived Ddx4+ cells differentiated into mesenchymal-like (ML) cells, able to deregulate genes involved in cell migration, invasiveness, stemness and chemoresistance in A2780 OC cells. This effect was primarily induced by ML-cells deriving from advanced NS-EOC, suggesting that a tumor-conditioned germ cell niche inhabits its microenvironment and is able to modulate, in a paracrine manner, tumor cell behavior through transcriptome modulation

    Rare Dihydropyrimidine Dehydrogenase Variants and Toxicity by Floropyrimidines: A Case Report

    Get PDF
    Variations in the activity, up to absolute deficiency, of the enzyme dihydropyrimidine dehydrogenase (DPD), result in the occurrence of adverse reactions to chemotherapy, and have been included among the pharmacogenetic factors underlying inter-individual variability in response to fluoropyrimidines. The study of single-nucleotide polymorphisms of the DPYD gene, which encodes the DPD enzyme, is one of the main parameters capable of predicting reduced enzymatic activity and the consequent influence on fluoropyrimidine treatment, in terms of reduction of both adverse reactions and therapeutic efficacy in disease control. In this paper, we describe a patient with metastatic breast cancer showing signs of increased toxicity following capecitabine therapy. The DPD enzyme activity analysis revealed a partial deficiency. The study of the most frequent polymorphisms of the DPYD gene suggested a wild-type genotype but indicated a novel variant c.1903A>G (p.Asn635Asp), not previously described, proximal to the splice donor site of exon 14. After excluding the potential pathogenic feature of the newly-identified variant, we performed cDNA sequencing of the entire DPYD coding sequence. This analysis identified the variants c.85T>C and c.496A>G, which were previously described as pivotal components of the haplotype associated with decreased enzyme activity and suggested that both variant alleles are related to DPD deficiency. The clinical case findings described in this study emphasize the importance of performing complete genetic analysis of the DPYD gene in order to identify rare and low frequency variants potentially responsible for toxic reactions to fluoropyrimidine treatment

    Characterization of Drosophila ATPsynC mutants as a new model of mitochondrial ATP synthase disorders

    Get PDF
    Mitochondrial disorders associated with genetic defects of the ATP synthase are among the most deleterious diseases of the neuromuscular system that primarily manifest in newborns. Nevertheless, the number of established animal models for the elucidation of the molecular mechanisms behind such pathologies is limited. In this paper, we target the Drosophila melanogaster gene encoding for the ATP synthase subunit c, ATPsynC, in order to create a fruit fly model for investigating defects in mitochondrial bioenergetics and to better understand the comprehensive pathological spectrum associated with mitochondrial ATP synthase dysfunctions. Using P-element and EMS mutagenesis, we isolated a set of mutations showing a wide range of effects, from larval lethality to complex pleiotropic phenotypes encompassing developmental delay, early adult lethality, hypoactivity, sterility, hypofertility, aberrant male courtship behavior, locomotor defects and aberrant gonadogenesis. ATPsynC mutations impair ATP synthesis and mitochondrial morphology, and represent a powerful toolkit for the screening of genetic modifiers that can lead to potential therapeutic solutions. Furthermore, the molecular characterization of ATPsynC mutations allowed us to better understand the genetics of the ATPsynC locus and to define three broad pathological consequences of mutations affecting the mitochondrial ATP synthase functionality in Drosophila: i) pre-adult lethality; ii) multi-trait pathology accompanied by early adult lethality; iii) multi-trait adult pathology. We finally predict plausible parallelisms with genetic defects of mitochondrial ATP synthase in humans.This work was supported by grants from Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) to C.C. and University of Bari D.R. n. 12939 to D.P

    ALK gene alterations in cancer: Biological aspects and therapeutic implications

    No full text
    ALK was first reported in 1994 as a translocation in anaplastic large cell lymphoma and then described with different abnormalities in a number of tumors. Recently, a shortly accumulated biomedical research clarified the numerous biological processes underlying its ability to support cancer development, growth and progression. Advent of precision medicine has finally provided unexpected advances, leading to the development of ALK-targeting inhibitors with superior efficacy as compared with standard chemotherapy regimens, as well as the identification of resistance mechanisms and the creation of 'next-generation' treatments. This review summarizes the current understanding of ALK-driven cancers from the oncogenesis and mutation frequency by The Cancer Genome Atlas database through the diagnostic approach, to an updated portrait of available tyrosine kinase inhibitors, considering their effectiveness in cancer treatment, the molecular reasons of therapeutic failure, and the actual and future ways to overcome resistances

    Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer.

    No full text
    Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon's co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon's evolutionary dynamics and increases our understanding on the Tc1-mariner elements' biology

    MetaShot: an accurate workflow for taxon classification of host-associated microbiome from shotgun metagenomic data

    Get PDF
    Shotgun metagenomics by high-throughput sequencing may allow deep and accurate characterization of host-associated total microbiomes, including bacteria, viruses, protists and fungi. However, the analysis of such sequencing data is still extremely challenging in terms of both overall accuracy and computational efficiency, and current methodologies show substantial variability in misclassification rate and resolution at lower taxonomic ranks or are limited to specific life domains (e.g. only bacteria). We present here MetaShot, a workflow for assessing the total microbiome composition from host-associated shotgun sequence data, and show its overall optimal accuracy performance by analyzing both simulated and real datasets

    Rare dihydropyrimidine dehydrogenase variants and toxicity by floropyrimidines: A case report

    No full text
    Variations in the activity, up to absolute deficiency, of the enzyme dihydropyrimidine dehydrogenase (DPD), result in the occurrence of adverse reactions to chemotherapy, and have been included among the pharmacogenetic factors underlying inter-individual variability in response to fluoropyrimidines. The study of single-nucleotide polymorphisms of the DPYD gene, which encodes the DPD enzyme, is one of the main parameters capable of predicting reduced enzymatic activity and the consequent influence on fluoropyrimidine treatment, in terms of reduction of both adverse reactions and therapeutic efficacy in disease control. In this paper, we describe a patient with metastatic breast cancer showing signs of increased toxicity following capecitabine therapy. The DPD enzyme activity analysis revealed a partial deficiency. The study of the most frequent polymorphisms of the DPYD gene suggested a wild-type genotype but indicated a novel variant c.1903A>G (p.Asn635Asp), not previously described, proximal to the splice donor site of exon 14. After excluding the potential pathogenic feature of the newly-identified variant, we performed cDNA sequencing of the entire DPYD coding sequence. This analysis identified the variants c.85T>C and c.496A>G, which were previously described as pivotal components of the haplotype associated with decreased enzyme activity and suggested that both variant alleles are related to DPD deficiency. The clinical case findings described in this study emphasize the importance of performing complete genetic analysis of the DPYD gene in order to identify rare and low frequency variants potentially responsible for toxic reactions to fluoropyrimidine treatment

    Abstract 2808: Characterization of the metastatic behavior and gene expression profile (RNAseq) of different melanoma cell lines: a comprehensive in vivo model

    No full text
    Results Conclusions Metastasis is the major cause of death in malignant melanoma. Several factors, including clinicalpathological and tumor biological features may restrain prognosis. Molecular mechanisms regulating melanoma progression and metastasis have been partially discovered, and thus we developed an in vivo model of metastatic melanoma to investigate potential genes implicated in these events. To evaluate the in vivo metastatic activity of five different melanoma cell lines (LCP, LCM, WM266, SKMel28 and A375), we completed intra-cardiac (ic) injection of 1x106 luminescent cells or PBS as control in three NOD-SCID mice per cell line. After 3 weeks, mice were studies by in vivo bioluminescence imaging (IVIS Lumina LT) to measure the mean radiance (p/sec/cm2/sr), that we arbitrarily considered as a surrogate of the total metastatic tumor burden (t-MTB). Animals were euthanized at the humane endpoints achievement and underwent X-ray evaluation for bone metastasis detection. The Kaplan-Meyer curves described the time to sacrifice from ic injection. Mouse necropsy identified metastatic organs that were explanted and processed for both histology and gene expression analysis. Melanoma cell lines were profiled for gene expression (RNAseq) of 118 genes notably involved in cancer progression and metastasis. Quantitative real time PCR (qRT-PCR) explored the expression of a restrict number of genes on formalinfixed paraffin-embedded (FFPE) metastatic samples from euthanized animals. All melanoma cell lines demonstrated a metastatic behaviour following ic injection with a variable attitude to produce bone and visceral metastasis (Figure 1). Mice injected with LCP, LCM and WM266 showed a lower t-MTB and increased survival (Figure 2) as compared to A375 and SK-Mel28. Thus, we arbitrarily defined LCP, LCM and WM-266 cells ‘poorly metastatic’ (group A), while A375 and SK-Mel28 ‘highly metastatic’ (group B). The principal component analysis (Figure 3A) and the unsupervised hierarchical clustering of 118 gene transcriptome analysis (not shown) revealed similar gene expression profiling among cell lines grouped for the metastatic attitude. The gene expression analysis performed on FFPE samples (Figure 3B) identified five deregulated genes (WNT5A, COL6A3, PTHLH, SOX9 and SERPINE1) between A and B. We describe the metastatic capacity of five melanoma cell lines. Gene expression profiling revealed the activation of five genes as putatively responsible for the high aggressiveness of A375 and SK-Mel28 cells. These results suggest to investigate these genes in a clinical setting and their possible application as druggable target for future therapeutic strategies
    corecore