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Abstract

Summary: Shotgun metagenomics by high-throughput sequencing may allow deep and accurate

characterization of host-associated total microbiomes, including bacteria, viruses, protists and

fungi. However, the analysis of such sequencing data is still extremely challenging in terms of both

overall accuracy and computational efficiency, and current methodologies show substantial vari-

ability in misclassification rate and resolution at lower taxonomic ranks or are limited to specific

life domains (e.g. only bacteria). We present here MetaShot, a workflow for assessing the total

microbiome composition from host-associated shotgun sequence data, and show its overall opti-

mal accuracy performance by analyzing both simulated and real datasets.

Availability and Implementation: https://github.com/bfosso/MetaShot

Contact: graziano.pesole@uniba.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Shotgun metagenomics approaches are opening new amazing avenues for

better understanding host-microbe interactions and related pathologies.

However, the effective and accurate characterization of host-associated

microbiomes is still a largely unsolved issue as different methodologies

show substantial variability in classification accuracy, precision and

computational resources consumption. Current methods for taxonomic

binning of metagenomic shotgun reads may be classified as supervised

or unsupervised, with the former having a substantial external depend-

ency on reference databases (Santamaria et al., 2012). Unsupervised

methods are generally based on specifically taxon-associated

compositional features of genome sequences (e.g. oligonucleotide com-

position, periodic sequence signals, etc.) (Koslicki et al., 2014; Wood

and Salzberg, 2014), whereas supervised methods are generally based on

similarity data obtained by aligning sampled reads to reference data-

bases. Although the accuracy of supervised methods is strongly depend-

ent on the reliability of reference databases, they usually provide a

deeper level of taxonomic classification, up to the species level which is

unfeasible for k-mer based techniques which hardly distinguish viral gen-

omes from bacterial and eukaryotic genomes (Bazinet and Cummings,

2012; Soueidan et al., 2015). The microbial components of environmen-

tal or clinical samples include viruses and all three life domains,
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including Archaea, Eubacteria, and Fungi and Protists among

Eukaryotes. Furthermore, in the case of clinical samples data, cleaning

from host reads is a crucial step for an appropriate and accurate micro-

biome assessment. We present here MetaShot, a novel analysis work-

flow for assessing the microbiome composition from host-associated

shotgun sequence data, and show its overall better performance with re-

spect to Kraken (Wood and Salzberg, 2014) and MetaPhlAn2 (Truong

et al., 2015), two state-of-the-art comparable tools.

2 Methods

The MetaShot workflow implements a two-step similarity-based ap-

proach to attain the best compromise between computational effi-

ciency and assignment accuracy. Indeed, in consideration that the

large majority of shotgun reads derive from the host we first carry

out a fast similarity-based screening to detect candidate microbial

reads, then a fine-grained taxonomic assessment of the much smaller

set of putative microbial reads is carried out by using also an itera-

tive taxon refinement procedure (see Supplementary Material for de-

tails). A software package implementing the MetaShot pipeline is

freely available at https://github.com/bfosso/MetaShot and includes

a utility tool for extracting all reads assigned to a specific NCBI

taxonomic ID or all those left unassigned.

3 Results

In order to carry out a comparative assessment of MetaShot per-

formance with respect to Kraken (Wood and Salzberg, 2014) and

MetaPhlAn2 (Truong et al., 2015), two state of the art tools for ana-

lyzing shotgun metagenomics data, we used ART (Huang et al.,

2012) to generate an in silico designed human microbiota with a

composition resembling a typical human sample, containing human,

bacterial and viral sequences (see Table 1A and Supplementary

Material for a more detailed description).

The simulated dataset also included reads from PhiX phage,

which have been shown to contaminate many assembled microbial

genomes (Mukherjee et al., 2015) and from human endogenous ret-

roviruses (HERV), which escape detection by most tools designed

for analyzing shotgun metagenomics data because they are simply

labeled as host reads. Indeed, under specific conditions these viruses

can be expressed and may play a role in disease pathogenesis (Agoni

et al., 2013; Li et al., 2015). Moreover, in order to compare

MetaShot, Kraken and MetaPhlAn2 on a controlled real dataset we

analyzed a bacterial and viral mock community (Conceicao-Neto

et al., 2015) available in the NCBI-SRA archive (SRR3458569).

The results of the benchmark assessment displayed in Table 1

clearly show that MetaShot outperforms Kraken and MetaPhlAn2 in

terms of the overall accuracy of reads assignment for the Prokaryotes

and Viruses simulated datasets, at the Family, Genus and Species levels.

In addition, MetaShot performs better that Kraken and MetaPhlAn2

also in terms of taxon assignment accuracy at Species and Genus levels

at both qualitative (see Supplementary Tables S1–S4) and quantitative

levels (See Supplementary Figs S2 and S3).

Finally, in order to test MetaShot on a real dataset we analyzed

DNA-seq (528 034 456 100 bp x 2 PE reads) and RNA-Seq (61 318

866 100 bp x 2 PE reads) data from a sample of cervical squamous

cell carcinoma of the uterus. While it is known that about 95% of

these cancers harbor human papillomavirus (HPV) genomes, the spe-

cific serotype involved varies, the most common ones being HPV16,

HPV18, and HPV31 (Growdon and Del Carmen, 2008). We previ-

ously established by PCR assessment that this test sample contained

HPV31. Indeed, HPV31 was detected only by MetaShot in both

DNA-Seq and RNA-Seq datasets (25 359 reads over 25 368 total viral

reads in DNA-Seq data and 13 684 reads over 14 150 total viral reads

in RNA-Seq data) whereas Kraken detected much fewer viral reads

(2656 and 1565 in total for DNA-Seq and RNA-Seq data, respect-

ively), notably not including HPV31 (see Supplementary Table S1)

which also MetaPhlAn2 was unable to detect.

These results confirm the optimal performance of MetaShot with re-

spect to Kraken and MetaPhlAn2 also in the case of real data analysis.

The MetaShot output consists of: (i) an HTML interactive table

reporting for each node in the inferred taxonomy the taxon name,

the NCBI taxonomy ID and the number of assigned reads; (ii) a CSV

file containing the same information reported in the interactive

table; (iii) a Krona graph (Ondov et al., 2011) to graphically inspect

the inferred microbiome.

A remarkable unique feature of MetaShot is the possibility to ex-

tract all unassigned reads or the set of reads assigned to a specific

taxon, defined by the NCBI taxonomy ID. This feature is particu-

larly useful for downstream analyses such as OTU generation, con-

tig assembly for the characterization of unassigned reads, or

functional annotation of the reads belonging to a specific species/

strain. In addition, this feature may allow for shotgun mapping

species-specific DNA-seq reads to their target genome, if available,

to prevent the possibility of artifacts, usually associated with a

strong positional mapping bias, due to chimeric contamination in

GenBank reference sequences (Mukherjee et al., 2015). Moreover,

Table 1. (A) Benchmark assessment of Kraken (KR) and MetaShot

(MS) on a simulated dataset (see the Supplementary Material for

details) consisting of 19 582 500 human (94.5%), 986 114 bacterial

(4.8%) and 146 886 viral (0.7%) reads. (B) Precision (P), Recall (R),

F-measure (F) and Unclassified reads (U) of Kraken (KR), MetaShot

(MS) and MetaPhlAn2 (MP) on the same simulated dataset, at the

Species level

(A)

Assigned %a Correctly Assigned %b

KR MS MPc KR MS MP

Human (host) 100.00 99.18 0c 100.00 99.99 0c

Prokaryotes

Family 57.41 97.91 5.16 96.77 98.37 97.59

Genus 55.01 98.14 4.96 95.92 98.17 98.02

Species 54.17 99.31 4.76 79.52 88.06 90.7

Viruses

Family 74.78 97.74 49.32 99.16 98.53 98.48

Genus 101.88 97.39 66.85 99.37 99.75 99.30

Species 73.45 97.81 43.86 98.98 96.70 95.46

(B)

Human (host) Prokaryotes Viruses

KR MS MP KR MS MP KR MS MP

P (%) 99.85 100.00 0 35.67 98.13 98.00 94.95 98.30 80.93

R(%) 100.00 99.97 0 35.16 84.52 87.31 92.77 98.19 79.32

F (%) 99.92 100.00 0 35.36 86.79 90.72 92.82 98.07 79.93

U(%) 0.00 1.04 99.99 55.28 2.44 94.50 4.25 3.94 30.74

aThe percentage refers to the total number of reads assignable to the spe-

cific taxonomic rank.
bThe percentage refers to the relevant assigned reads.
cMetaPhlAn2 assigns just the sequences containing specific taxon markers

and does not search for human host sequences.
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in the case of shotgun RNA-Seq reads, mapping to their target gen-

ome may precisely assess their relevant expression profile.

The price for the overall better accuracy of MetaShot is a lower

computational efficiency. MetaShot is about 2 and 3 times slower

than Kraken and MetaPhlAn2, respectively, for the complete analysis

of the simulated benchmark dataset (see Supplementary Material).
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