31 research outputs found

    Syndromic surveillance to assess the potential public health impact of the Icelandic volcanic ash plume across the United Kingdom, April 2010

    Get PDF
    The Eyjafjallajökull volcano in Iceland erupted on 14 April 2010 emitting a volcanic ash plume that spread across the United Kingdom and mainland Europe. The Health Protection Agency and Health Protection Scotland used existing syndromic surveillance systems to monitor community health during the incident: there were no particularly unusual increases in any of the monitored conditions. This incident has again demonstrated the use of syndromic surveillance systems for monitoring community health in real time

    The relative effects of prey availability, anthropogenic pressure and environmental variables on lion (Panthera leo) site use in Tanzania's Ruaha landscape during the dry season

    Get PDF
    African lion (Panthera leo) populations have been reduced by almost half in the past two decades, with national parks and game reserves maintaining vital source populations, particularly in East Africa. However, much of the habitats necessary to support lion populations occur in unprotected lands surrounding protected areas. There is an ongoing need for understanding the ecological determinants of lion occurrence in these unprotected habitats, where lions are most vulnerable to extinction. This study evaluated variations in lion site use along a gradient of anthropogenic pressure encompassing the Ruaha National Park, Pawaga‐Idodi Wildlife Management Area (WMA) and unprotected village lands via camera‐trapping. We collected lion occurrence data in the dry seasons of 2014 and 2015, and modelled lion site use as a function of environmental and anthropogenic variables under a Bayesian framework. We recorded 143 lion detections within the national park, 14 in the WMA and no detections in village lands. This result does not imply that lions never use the village lands, but rather that we did not detect them in our surveys during the dry season. Our findings suggest that lion site use was primarily associated with high seasonal wild prey biomass in protected areas. Thus, we infer that human‐induced prey depletion and lion mortality are compromising lion site use of village lands. Seasonal prey movements, and a corresponding concentration inside the park during sampling, could also play an important role in lion site use. These findings reinforce the need to secure large‐bodied prey base to conserve lions, and the importance of protected areas as key refugia for the species

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Wanita di dalam Islam

    No full text

    How key habitat features influence large terrestrial carnivore movements: waterholes and African lions in a semi-arid savanna of north-western Zimbabwe

    No full text
    Within a landscape where prey has an aggregated distribution, predators can take advantage of the spatial autocorrelation of prey density and intensify their search effort in areas of high prey density by using area-restricted search behaviour. In African arid and semi-arid savannas, large herbivores tend to aggregate around scarce water sources. We tested the hypothesis that water sources are a key determinant of habitat selection and movement patterns of large free-ranging predators in such savannas, using the example of the African lion. We used data from 19 GPS radio-collared lions in Hwange National Park, Zimbabwe. Maps of lions' trajectories showed that waterholes are key loci on the lions' route-maps. Compositional analyses revealed that lions significantly selected for areas located within 2 km of a waterhole. In addition, analysis of lions' night paths showed that when lions are close to a waterhole (<2 km), they move at lower speed, cover shorter distances per night (both path length and net displacement) and follow a more tortuous path (higher turning angle, lower straightness index and higher fractal dimension) than when they are further from a waterhole. Hence, our results strongly suggest that lions adopt area-restricted searching in the vicinity of waterholes, and reduce their search effort to minimize the time spent far from a waterhole. They provide an illustration of how key habitat features that determine the dispersion of prey (e.g. waterholes in this study) have an influence on the spatial ecology and movement patterns of terrestrial predators. © 2009 Springer Science+Business Media B.V
    corecore